16,282 research outputs found

    Small radii of neutron stars as an indication of novel in-medium effects

    Full text link
    At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10 km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii.Comment: EPJA (2015) in pres

    Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    Full text link
    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supra-normal densities and of asymmetric matter at sub-saturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in ^{208}Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ\rho meson required by the partial restoration of chiral symmetry.Comment: Accepted version to appear in PRC (2007

    Large-mass neutron stars with hyperonization

    Full text link
    Within a density-dependent relativistic mean-field model using in-medium meson-hadron coupling constants and meson masses, we explore effects of in-medium hyperon interactions on properties of neutron stars. It is found that the hyperonic constituents in large-mass neutron stars can not be simply ruled out, while the recently measured mass of the millisecond pulsar J1614-2230 can constrain significantly the in-medium hyperon interactions. Moreover, effects of nuclear symmetry energy on hyperonization in neutron stars are also discussed

    Effects of medium-induced ρω\rho-\omega meson mixing on the equation of state in isospin-asymmetric nuclear matter

    Full text link
    We reexamine effects of the ρω\rho-\omega meson mixing mediated by nucleon polarizations on the symmetry energy in isospin-asymmetric nuclear matter. Taking into account the rearrangement term neglected in previous studies by others, we evaluate the ρω\rho-\omega mixing angle in a novel way within the Relativistic Mean-Field Models with and without chiral limits. It is found that the symmetry energy is significantly softened at high densities contrary to the finding in earlier studies. As the first step of going beyond the lowest-order calculations, we also solve the RPA equation for the ρω\rho-\omega mixing. In this case, it is found that the symmetry energy is not only significantly softened by the ρω\rho-\omega mixing at supra-saturation densities, similar to the lowest-order ρω\rho-\omega mixing, but interestingly also softened at subsaturation densities. In addition, the softening of the symmetry energy at subsaturation densities can be partly suppressed by the nonlinear self-interaction of the σ\sigma meson.Comment: Significant changes made. Accepted version to appear in PRC (2009

    Real-time Data Flow Control for CBM-TOF Super Module Quality Evaluation

    Full text link
    Super module assembled with MRPC detectors is the component unit of TOF (Time of Flight) system for the Compressed Baryonic Matter (CBM) experiment. Quality of super modules needs to be evaluated before it is applied in CBM-TOF. Time signals exported from super module are digitalized at TDC (Time to Digital Converter) station. Data rate is up to 6 Gbps at each TDC station, which brings a tremendous pressure for data transmission in real time. In this paper, a real-time data flow control method is designed. In this control method, data flow is divided into 3 types: scientific data flow, status data flow and control data flow. In scientific data flow, data of each TDC station is divided into 4 sub-flows, and then is read out by a parallel and hierarchical network, which consists of multiple readout mother boards and daughter boards groups. In status data flow, status data is aggregated into a specific readout mother board. Then it is uploaded to DAQ via readout daughter board. In control data flow, control data is downloaded to all circuit modules in the opposite direction of status data flow. Preliminary test result indicated data of STS was correctly transmitted to DAQ with no error and three type data flows were control orderly in real time. This data flow control method can meet the quality evaluation requirement of supper module in CBM-TOF

    Withaferin A promotes proliferation and migration of brain endothelial cells

    Get PDF
    Purpose: To investigate the effect of withaferin A (WFA) on the proliferation and migration of brain endothelial cells.Methods: BALB-5023 mouse microvascular cells were treated with a range of withaferin A (WFA) concentrations from 10 to 100 ng/mL. Dojindo’s CCK-8 cell proliferation kit was used for the analysis of cell proliferation. Transwell cell culture inserts were used to determine the migration potential of WFAtreated endothelial cells. Absorbance was measured at 450 nm on an enzyme-linked immunosorbent(ELISA) reader.Results: The results revealed a significant increase in the proliferation and migration of endothelial cells following treatment with a low concentration (30 ng/mL) of WFA compared with the higher concentration (> 10 ng/mL). The effect was further  enhanced when WFA was used in combination with soluble Fas ligand (sFasL). Autocrine signaling of vascular endothelial growth factor (VEGF) by endothelial cellswas significantly increased following treatment with WFA or in combination with  sFasL. WFA increased the expression of Fas on endothelial cells, suggesting the involvement of sFasL in the proliferation and migration of brain endothelial cells.Conclusion: Thus, WFA promotes the proliferation and migration of endothelial cells through increase in the expression of Fas and secretion of VEGF.Keywords: Endothelial cells, Vascular endothelial growth factor, Microvascular, Vascular disease, Withaferin

    Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    Full text link
    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high energy region where the relativistic impulse approximation is applicable.Comment: 13 pages, 6 figure
    corecore