52 research outputs found

    Increment entropy as a measure of complexity for time series

    Full text link
    Entropy has been a common index to quantify the complexity of time series in a variety of fields. Here, we introduce increment entropy to measure the complexity of time series in which each increment is mapped into a word of two letters, one letter corresponding to direction and the other corresponding to magnitude. The Shannon entropy of the words is termed as increment entropy (IncrEn). Simulations on synthetic data and tests on epileptic EEG signals have demonstrated its ability of detecting the abrupt change, regardless of energetic (e.g. spikes or bursts) or structural changes. The computation of IncrEn does not make any assumption on time series and it can be applicable to arbitrary real-world data.Comment: 12pages,7figure,2 table

    Sales Model Selection for Second-hand vehicle E-commerce

    Get PDF
    The online second-hand vehicle sales models now include: auction model, consignment sales model, purchase and sales model, third party evaluation platform model and information consultant platform model. So choose a right sales model is important for sellers. We use AHP method to confirm key factors and built a score model base for different sales models. Though analysis, we can the conclusion that the best order of choice for online second-hand vehicle business model is: auction model, consignment sales model, purchase and sale model, information consultant platform and third party evaluation platform

    Robust residual-guided iterative reconstruction for sparse-view CT in small animal imaging

    Get PDF
    Objective. We introduce a robust image reconstruction algorithm named residual-guided Golub–Kahan iterative reconstruction technique (RGIRT) designed for sparse-view computed tomography (CT), which aims at high-fidelity image reconstruction from a limited number of projection views. Approach. RGIRT utilizes an inner-outer dual iteration framework, with a flexible least square QR (FLSQR) algorithm implemented in the inner iteration and a restarted iterative scheme applied in the outer iteration. The inner FLSQR employs a flexible Golub–Kahan bidiagonalization method to reduce the size of the inverse problem, and a weighted generalized cross-validation method to adaptively estimate the regularization hyper-parameter. The inner iteration efficiently yields the intermediate reconstruction result, while the outer iteration minimizes the residual and refines the solution by using the result obtained from the inner iteration. Main results. The reconstruction performance of RGIRT is evaluated and compared to other reference methods (FBPConvNet, SART-TV, and FLSQR) using projection data from both numerical phantoms and real experimental Micro-CT data. The experimental findings, from testing various numbers of projection views and different noise levels, underscore the robustness of RGIRT. Meanwhile, theoretical analysis confirms the convergence of residual for our approach. Significance. We propose a robust iterative reconstruction algorithm for x-ray CT scans with sparse views, thereby shortening scanning time and mitigating excessive ionizing radiation exposure to small animals

    The effects of intro-oral parathyroid hormone on the healing of tooth extraction socket: an experimental study on hyperglycemic rats

    Get PDF
    Objective: To investigate the effects of intro-oral injection of parathyroid hormone (PTH) on tooth extraction wound healing in hyperglycemic rats. Methodology: 60 male Sprague-Dawley rats were randomly divided into the normal group (n=30) and DM group (n=30). Type 1 diabetes mellitus (DM) was induced by streptozotocin. After extracting the left first molar of all rats, each group was further divided into 3 subgroups (n=10 per subgroup), receiving the administration of intermittent PTH, continuous PTH and saline (control), respectively. The intermittent-PTH group received intra-oral injection of PTH three times per week for two weeks. A thermosensitive controlled-release hydrogel was synthesized for continuous-PTH administration. The serum chemistry was determined to evaluate the systemic condition. All animals were sacrificed after 14 days. Micro-computed tomography (Micro-CT) and histological analyses were used to evaluate the healing of extraction sockets. Results: The level of serum glucose in the DM groups was significantly higher than that in the non-DM groups (p<0.05); the level of serum calcium was similar in all groups (p>0.05). Micro-CT analysis showed that the DM group had a significantly lower alveolar bone trabecular number (Tb.N) and higher trabecular separation (Tb.Sp) than the normal group (p<0.05). The histological analyses showed that no significant difference in the amount of new bone (hard tissue) formation was found between the PTH and non-PTH groups (p>0.05). Conclusions: Bone formation in the extraction socket of the type 1 diabetic rats was reduced. PTH did not improve the healing of hard and soft tissues. The different PTH administration regimes (continuous vs. intermittent) had similar effect on tissue healing. These results demonstrated that the metabolic characteristics of the hyperglycemic rats produced a condition that was unable to respond to PTH treatment

    Photothermal hydrogels for infection control and tissue regeneration

    Get PDF
    In this review, we report investigating photothermal hydrogels, innovative biomedical materials designed for infection control and tissue regeneration. These hydrogels exhibit responsiveness to near-infrared (NIR) stimulation, altering their structure and properties, which is pivotal for medical applications. Photothermal hydrogels have emerged as a significant advancement in medical materials, harnessing photothermal agents (PTAs) to respond to NIR light. This responsiveness is crucial for controlling infections and promoting tissue healing. We discuss three construction methods for preparing photothermal hydrogels, emphasizing their design and synthesis, which incorporate PTAs to achieve the desired photothermal effects. The application of these hydrogels demonstrates enhanced infection control and tissue regeneration, supported by their unique photothermal properties. Although research progress in photothermal hydrogels is promising, challenges remain. We address these issues and explore future directions to enhance their therapeutic potential

    Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis

    Get PDF
    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed

    Role of Broad-Complex (Br) and KrĂĽppel homolog 1 (Kr-h1) in the Ovary Development of Nilaparvata lugens

    Full text link
    Ovarian development plays an important role in the life history of insects and is crucial for control of the insect population. The metamorphosis of an insect is precisely regulated by the interaction of the juvenile hormone and ecdysone. To understand the role of NlBr and NlKr-h1 in ovary development, we used RNA interference (RNAi) to down-regulate the expression of Broad-Complex (Br) and KrĂĽppel homolog 1 (Kr-h1), two important down-stream transcription factors of juvenile hormone and ecdysone signaling. We further investigated their effects on metamorphosis and ovary development. The results showed that both NlBr and NlKr-h1 are induced by ecdysone. The down-regulation of NlBr and NlKr-h1 alone or together by RNAi is more effective than the topical application of ecdysone on the number of ovarioles, suggesting the necessity of NlBr and NlKr-h1 in determining the number of ovarioles. The ovarian grade was significantly increased/decreased by the topical application of ecdysone and down-regulation of NlBr and NlKr-h1. The pre-oviposition period was also increased. When NlBr and NlKr-h1 were down-regulated together, the ovary grade was not significantly different compared to the control (dsGFP), indicating that the development of the ovary is under the control of both NlBr and NlKr-h1. The interaction between the NlBr and NlKr-h1 on the number of ovarioles and the development of the ovary indicates cross-talk between both juvenile hormone and ecdysone signaling at the transcription level in the brown planthopper. Both genes are nuclear transcription factors and may regulate signaling via down-stream genes. These results would help to both enhance the current understanding of the regulatory mechanism of the interaction between juvenile hormone and ecdysone signaling pathways during ovarian development and to design chemicals to control pests
    • …
    corecore