632 research outputs found
Large-scale Heteroscedastic Regression via Gaussian Process
Heteroscedastic regression considering the varying noises among observations
has many applications in the fields like machine learning and statistics. Here
we focus on the heteroscedastic Gaussian process (HGP) regression which
integrates the latent function and the noise function together in a unified
non-parametric Bayesian framework. Though showing remarkable performance, HGP
suffers from the cubic time complexity, which strictly limits its application
to big data. To improve the scalability, we first develop a variational sparse
inference algorithm, named VSHGP, to handle large-scale datasets. Furthermore,
two variants are developed to improve the scalability and capability of VSHGP.
The first is stochastic VSHGP (SVSHGP) which derives a factorized evidence
lower bound, thus enhancing efficient stochastic variational inference. The
second is distributed VSHGP (DVSHGP) which (i) follows the Bayesian committee
machine formalism to distribute computations over multiple local VSHGP experts
with many inducing points; and (ii) adopts hybrid parameters for experts to
guard against over-fitting and capture local variety. The superiority of DVSHGP
and SVSHGP as compared to existing scalable heteroscedastic/homoscedastic GPs
is then extensively verified on various datasets.Comment: 14 pages, 15 figure
Understanding and Comparing Scalable Gaussian Process Regression for Big Data
As a non-parametric Bayesian model which produces informative predictive
distribution, Gaussian process (GP) has been widely used in various fields,
like regression, classification and optimization. The cubic complexity of
standard GP however leads to poor scalability, which poses challenges in the
era of big data. Hence, various scalable GPs have been developed in the
literature in order to improve the scalability while retaining desirable
prediction accuracy. This paper devotes to investigating the methodological
characteristics and performance of representative global and local scalable GPs
including sparse approximations and local aggregations from four main
perspectives: scalability, capability, controllability and robustness. The
numerical experiments on two toy examples and five real-world datasets with up
to 250K points offer the following findings. In terms of scalability, most of
the scalable GPs own a time complexity that is linear to the training size. In
terms of capability, the sparse approximations capture the long-term spatial
correlations, the local aggregations capture the local patterns but suffer from
over-fitting in some scenarios. In terms of controllability, we could improve
the performance of sparse approximations by simply increasing the inducing
size. But this is not the case for local aggregations. In terms of robustness,
local aggregations are robust to various initializations of hyperparameters due
to the local attention mechanism. Finally, we highlight that the proper hybrid
of global and local scalable GPs may be a promising way to improve both the
model capability and scalability for big data.Comment: 25 pages, 15 figures, preprint submitted to KB
Facial Action Unit Detection Using Attention and Relation Learning
Attention mechanism has recently attracted increasing attentions in the field
of facial action unit (AU) detection. By finding the region of interest of each
AU with the attention mechanism, AU-related local features can be captured.
Most of the existing attention based AU detection works use prior knowledge to
predefine fixed attentions or refine the predefined attentions within a small
range, which limits their capacity to model various AUs. In this paper, we
propose an end-to-end deep learning based attention and relation learning
framework for AU detection with only AU labels, which has not been explored
before. In particular, multi-scale features shared by each AU are learned
firstly, and then both channel-wise and spatial attentions are adaptively
learned to select and extract AU-related local features. Moreover, pixel-level
relations for AUs are further captured to refine spatial attentions so as to
extract more relevant local features. Without changing the network
architecture, our framework can be easily extended for AU intensity estimation.
Extensive experiments show that our framework (i) soundly outperforms the
state-of-the-art methods for both AU detection and AU intensity estimation on
the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can
adaptively capture the correlated regions of each AU, and (iii) also works well
under severe occlusions and large poses.Comment: This paper is accepted by IEEE Transactions on Affective Computin
Sharpness-aware Quantization for Deep Neural Networks
Network quantization is an effective compression method to reduce the model
size and computational cost. Despite the high compression ratio, training a
low-precision model is difficult due to the discrete and non-differentiable
nature of quantization, resulting in considerable performance degradation.
Recently, Sharpness-Aware Minimization (SAM) has been proposed to improve the
generalization performance of the models by simultaneously minimizing the loss
value and the loss curvature. However, SAM can not be directly applied to
quantized models due to the discretization process in network quantization. In
this paper, we devise a Sharpness-Aware Quantization (SAQ) method to train
quantized models, leading to better generalization performance. Moreover, since
each layer contributes differently to the loss value and the loss sharpness of
a network, we further devise an effective method that learns a configuration
generator to automatically determine the bitwidth configurations of each layer,
encouraging lower bits for flat regions and vice versa for sharp landscapes,
while simultaneously promoting the flatness of minima to enable more aggressive
quantization. Extensive experiments on CIFAR-100 and ImageNet show the superior
performance of the proposed methods. For example, our quantized ResNet-18 with
53.7x Bit-Operation (BOP) reduction even outperforms the full-precision one by
0.7% in terms of the Top-1 accuracy. Code is available at
https://github.com/zip-group/SAQ.Comment: Tech repor
- …