17 research outputs found

    Topology Repairing of Disconnected Pulmonary Airways and Vessels: Baselines and a Dataset

    Full text link
    Accurate segmentation of pulmonary airways and vessels is crucial for the diagnosis and treatment of pulmonary diseases. However, current deep learning approaches suffer from disconnectivity issues that hinder their clinical usefulness. To address this challenge, we propose a post-processing approach that leverages a data-driven method to repair the topology of disconnected pulmonary tubular structures. Our approach formulates the problem as a keypoint detection task, where a neural network is trained to predict keypoints that can bridge disconnected components. We use a training data synthesis pipeline that generates disconnected data from complete pulmonary structures. Moreover, the new Pulmonary Tree Repairing (PTR) dataset is publicly available, which comprises 800 complete 3D models of pulmonary airways, arteries, and veins, as well as the synthetic disconnected data. Our code and data are available at https://github.com/M3DV/pulmonary-tree-repairing.Comment: MICCAI 2023 Early Accepte

    Understanding Daily Travel Patterns of Subway Users – An Example from the Beijing Subway

    Get PDF
    The daily travel patterns (DTPs) present short-term and timely characteristics of the users’ travel behaviour, and they are helpful for subway planners to better understand the travel choices and regularity of subway users (SUs) in details. While several well-known subway travel patterns have been detected, such as commuting modes and shopping modes, specific features of many patterns are still confused or omitted. Now, based on the automatic fare collection (AFC) system, a data-mining procedure to recognize DTPs of all SUs has become possible and effective. In this study, DTPs are identified by the station sequences (SSs), which are modelled from smart card transaction data of the AFC system. The data-mining procedure is applied to a large weekly sample from the Beijing Subway to understand DTPs. The results show that more than 93% SUs of the Beijing Subway travel in 7 DTPs, which are remarkably stable in share and distribution. Different DTPs have their own unique characteristics in terms of time distribution, activity duration and repeatability, which provide a wealth of information to calibrate different types of users and characterize their travel patterns.</p

    Freeway Travel Speed Calculation Model Based on ETC Transaction Data

    Get PDF
    Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers

    Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Get PDF
    Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions

    Fuel Consumption and Vehicle Emission Models for Evaluating Environmental Impacts of the ETC System

    No full text
    The environmental outcome of the Electronic Toll Collection (ETC) system is an important aspect in evaluating the impacts of the ETC system, which is influenced by various factors including the vehicle type, travel speed, traffic volume, and average queue length of Manual Toll Collection (MTC) lanes. The primary objective of this paper is to develop a field data-based practical model for evaluating the effects of ETC system on the fuel efficiency and vehicle emission. First, laboratory experiments of seven types of vehicles under various scenarios for toll collection were conducted based on the Vehicle Emissions Testing System (VETS). The indicator calculation models were then established to estimate the comprehensive benefit of ETC system by comparing the test results of MTC lane and ETC lane. Finally, taking Beijing as a case study, the paper calibrated the model parameters, and estimated the monetization value of environmental benefit of the ETC system in terms of vehicle emissions reduction and fuel consumption decrease. The results shows that the applications of ETC system are expected to save fuel consumption of 4.1 million liters and reduce pollution emissions by 730.89 tons in 2013 in Beijing

    Identification of Inelastic Subway Trips Based on Weekly Station Sequence Data: An Example from the Beijing Subway

    No full text
    Urban rail transit has become an indispensable option for Beijing residents. Subway inelastic users (SIUs) are the main component among all users. Understanding the proportion of SIUs and their characteristics is important in developing service promotions and helpful for subway agencies in making marketing policies. This paper proposes a novel and simple identification process for identifying regular subway inelastic trips (SITs) in order to distinguish SITs and non-SITs and extract their characteristics. Weekly station sequence (WSS) is selected as the data-based format, principles of SIUs are discussed and chosen, and the framework of SIT identification is applied to a large weekly sample from the Beijing Subway. A revealed preference (RP) survey and results analysis are undertaken to estimate the performance of the proposed methods. The RP survey validation shows that accuracy reaches as high as 94%, and the distribution analysis of SITs and their origin-destinations (ODs) indicate that the SIT characteristics extracted are consistent with the situation in Beijing. The proportion of SIUs is stable on workdays and is more than 80% during rush hour. The efforts described in this paper can provide subway managers with a useful and convenient method to understand the characteristics of subway passengers and the performance of a subway system

    A Bus Service Evaluation Method from Passenger’s Perspective Based on Satisfaction Surveys: A Case Study of Beijing, China

    No full text
    As an important part of urban public transport, bus service quality is an important factor affecting the choice of passenger travel mode. This paper constructs a set of satisfaction evaluation indicator systems from the perspective of passenger perception, covering the whole travel process. It is composed of 6 first-level indexes (timeliness, safety, convenience, comfort, reliability and economy) and 21 second-level indexes. Considering the scale of bus service in Beijing, this research carried out a stratified sampling on 100 bus lines and collected 3012 field questionnaire surveys. The basic information of the bus routes investigated, demographic questions and their opinions of the satisfaction of the bus service were all recorded in the questionnaire. After testing the reliability and validity of the indicator system, the paper proposes a satisfaction evaluation model weighted by the related coefficient. The results show that overall satisfaction score is 78.2 and the proportion of bus passengers who are satisfied with the bus service nearly 70%. Multivariate analysis of variance methods were employed to evaluate the satisfaction influencing factors. Conclusions can be drawn that the satisfaction score of timeliness is lowest, which is mainly influenced by three factors: the passenger&rsquo;s age, travel purpose and time. The research provides positive contributions toward normalizing performance evaluation for public transportation and enhancing the sustainable development of bus

    Identifying and Segmenting Commuting Behavior Patterns Based on Smart Card Data and Travel Survey Data

    No full text
    Understanding commuting patterns could provide effective support for the planning and operation of public transport systems. One-month smart card data and travel behavior survey data in Beijing were integrated to complement the socioeconomic attributes of cardholders. The light gradient boosting machine (LightGBM) was introduced to identify the commuting patterns considering the spatiotemporal regularity of travel behavior. Commuters were further divided into fine-grained clusters according to their departure time using the latent Dirichlet allocation model. To enhance the interpretation of the behavior patterns in each cluster, we investigated the relationship between the socioeconomic characteristics of the residence locations and commuter cluster distributions. Approximately 3.1 million cardholders were identified as commuters, accounting for 67.39% of daily passenger volume. Their commuting routes indicated the existence of job&ndash;house imbalance and excess commuting in Beijing. We further segmented commuters into six clusters with different temporal patterns, including two-peak, staggered shifts, flexible departure time, and single-peak. The residences of commuters are mainly concentrated in the low housing price and high or medium population density areas; subway facilities will promote people to commute using public transport. This study will help stakeholders optimize the public transport networks, scheduling scheme, and policy accordingly, thus ameliorating commuting within cities

    Integrated-Hybrid Framework for Connected and Autonomous Vehicles Microscopic Traffic Flow Modelling

    No full text
    In this study, a novel traffic flow modeling framework is proposed considering the impact of driving system and vehicle mechanical behavior as two different units on the traffic flow. To precisely model the behavior of Connected and Autonomous (CA) vehicles, three submodels are proposed as a novel microscopic traffic flow framework, named Integrated-Hybrid (IH) model. Focusing on the realization of the car following behavior of CA vehicles, the driving system (vehicle control system) and the vehicle mechanical system are modeled separately and linked by throttle and brake actuators model. +e IH model constitutes the key part of the Full Velocity Difference (FVD) model considering the mechanical capability of vehicles and dynamic collision avoidance strategies to ensure the safety of following distance between two consecutive vehicles. Linear stability conditions are derived for each model and developing methodology for each submodel is discussed. Our simulations revealed that the IH model successfully generates velocity and acceleration profiles during car following maneuvers and throttle angle/brake information in connected vehicles environment can effectively improve traffic flow stability. +e vehicles’ departure and arrival process while passing through a signal-lane with a traffic light considering the anticipation driving behavior and throttle angle/brake information of direct leading vehicle was explored. Our numerical results demonstrated that the IH model can capture the velocity fluctuations, delay times, and kinematic waves efficiently in traffic flow
    corecore