54 research outputs found

    FAS-assisted NOMA Short-Packet Communication Systems

    Full text link
    In this paper, we investigate a fluid antenna system (FAS)-assisted downlink non-orthogonal multiple access (NOMA) for short-packet communications. The base station (BS) adopts a single fixed antenna, while both the central user (CU) and the cell-edge user (CEU) are equipped with a FAS. Each FAS comprises NN flexible positions (also known as ports), linked to NN arbitrarily correlated Rayleigh fading channels. We derive expressions for the average block error rate (BLER) of the FAS-assisted NOMA system and provide asymptotic BLER expressions. We determine that the diversity order for CU and CEU is NN, indicating that the system performance can be considerably improved by increasing NN. Simulation results validate the great performance of FAS.Comment: Submitted to IEEE journa

    FAS-assisted NOMA Short-Packet Communication Systems

    Get PDF
    In this letter, we investigate a fluid antenna system (FAS)-assisted downlink non-orthogonal multiple access (NOMA) for short-packet communications. The base station (BS) adopts a single fixed antenna, while both the central user (CU) and the cell-edge user (CEU) are equipped with a FAS. Each FAS comprises N flexible positions (also known as ports), linked to N arbitrarily correlated Rayleigh fading channels. We derive expressions for the average block error rate (BLER) of the FAS-assisted NOMA system and provide asymptotic BLER expressions. We determine that the diversity order for CU and CEU is N , indicating that the system performance can be considerably improved by increasing N . Simulation results validate the great performance of FAS

    Ideal maximum strengths and defect-induced softening in nanocrystalline-nanotwinned metals

    Get PDF
    Strengthening of metals through nanoscale grain boundaries and coherent twin boundaries is manifested by a maximum strength—a phenomenon known as Hall–Petch breakdown. Different softening mechanisms are considered to occur for nanocrystalline and nanotwinned materials. Here, we report nanocrystalline-nanotwinned Ag materials that exhibit two strength transitions dissimilar from the above mechanisms. Atomistic simulations show three distinct strength regions as twin spacing decreases, delineated by positive Hall–Petch strengthening to grain-boundary-dictated (near-zero Hall–Petch slope) mechanisms and to softening (negative Hall–Petch slope) induced by twin-boundary defects. An ideal maximum strength is reached for a range of twin spacings below 7 nm. We synthesized nanocrystalline-nanotwinned Ag with hardness 3.05 GPa—42% higher than the current record, by segregating trace concentrations of Cu impurity (\u3c1.0 weight (wt)%). The microalloy retains excellent electrical conductivity and remains stable up to 653 K; 215 K better than for pure nanotwinned Ag. This breaks the existing trade-off between strength and electrical conductivity, and demonstrates the potential for creating interface-dominated materials with unprecedented mechanical and physical properties

    Recent advances in carbon dioxide utilization

    Get PDF
    Carbon dioxide (CO2) is the major contributor to greenhouse gas (GHG) emissions and the main driver of climate change. Currently, CO2 utilization is increasingly attracting interest in processes like enhanced oil recovery and coal bed methane and it has the potential to be used in hydraulic fracturing processes, among others. In this review, the latest developments in CO2 capture, utilization, conversion, and sequestration are examined through a multi-scale perspective. The diverse range of CO2 utilization applications, including mineralization, biological utilization, food and beverages, energy storage media, and chemicals, is comprehensively presented. We also discuss the worldwide research and development of CO2 utilization projects. Lastly, we examine the key challenges and issues that must be faced for pilot-scale and industrial applications in the future. This study demonstrates that CO2 utilization can be a driver for the future development of carbon capture and utilization technologies. However, considering the amount of CO2 produced globally, even if it can be reduced in the near-to mid-term future, carbon capture and storage will remain the primary strategy and, so, complementary strategies are desirable. Currently, the main CO2 utilization industry is enhanced oil and gas recovery, but considering the carbon life cycle, these processes still add CO2 to the atmosphere. In order to implement other CO2 utilization technologies at a large scale, in addition to their current technical feasibility, their economic and societal viability is critical. Therefore, future efforts should be directed toward reduction of energy penalties and costs, and the introduction of policies and regulation encouraging carbon capture, utilization and storage, and increasing the public acceptance of the strategies in a complementary manner

    Immunogenicity and Protective Capacity of Sugar ABC Transporter Substrate-Binding Protein against Streptococcus suis Serotype 2, 7 and 9 Infection in Mice

    Get PDF
    Background: Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-Îł and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis

    OPTICAL NETWORK PERMUTATION CAPABILITY

    No full text
    In this paper, we study optical multistage interconnection networks (MINs). Advances in electro-optic technologies have made optical communication a promising networking choice to meet the increasing demands of high-performance computing communication applications for high channel bandwidth and low communication latency. Although optical MINs hold great promise and have demonstrated advantages over their electronic counterpart, they also hold their own challenges. Due to the unique properties of optics, crosstalk in optical switches should be avoided to make them work properly. Most of the research work described in the literature is on electronic MINs, and hence, crosstalk is not considered. In this paper, we introduce a new concept, semi-permutation, to analyze the permutation capability of optical MINs under the constraint of avoiding crosstalk, and we apply it to two examples of optical MINs, the banyan network and the Benes network. For the blocking banyan network, we show that not all semi-permutations are realizable in one pass, and we give the number of realizable semi-permutations. For the rearrangeable Benes network, we show that any semi-permutation is realizable in one pass and any permutation is realizable in two passes under the constraint of avoiding crosstalk. A routing algorithm

    Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection.

    No full text
    BACKGROUND AND AIM: The present anti-infection strategy for prosthetic joint infections (PJI) includes the use of antibiotics and surgical treatments, but the bacterial eradication rates are still low. One of the major challenges is the formation of biofilm causing poor bacterial eradication. Recently it has been reported that allicin (diallyl thiosulphinate), an antibacterial principle of garlic, can inhibit bacteria adherence and prevent biofilm formation in vitro. However, whether allicin could inhibit biofilm formation in vivo is unknown. The aim of this study was to investigate the effects of allicin on biofilm formation, and whether allicin could potentiate the bactericidal effect of vancomycin in a rabbit PJI model. METHODS: A sterile stainless-steel screw with a sterile ultra-high molecular weight polyethylene washer was inserted into the lateral femoral condyle of the right hind knee joint of rabbit, and 1 mL inoculum containing 104 colony-forming units of Staphylococcus epidermidis was inoculated into the knee joint (n = 32). Fourteen days later, rabbits randomly received one of the following 4 treatments using continuous lavages: normal saline, vancomycin (20 mcg/mL), allicin (4 mg/L), or allicin (4 mg/L) plus vancomycin (20 mcg/mL). Three days later, the washer surface biofilm formation was examined by scanning electron microscopy (SEM). The bacterial counts within the biofilm of implanted screws were determined by bacterial culture. RESULTS: The lowest number of viable bacterial counts of Staphylococcus epidermidis recovered from the biofilm was in the rabbits treated with allicin plus vancomycin (P<0.01 vs. all other groups). The biofilm formation was significantly reduced or undetectable by SEM in rabbits receiving allicin or allicin plus vancomycin. CONCLUSION: Intra-articular allicincan inhibit biofilm formation and enhance the bactericidal effect of vancomycin on implant surface in vivo. Allicin in combination with vancomycin may be a useful anti-infection strategy for the treatment of PJI
    • …
    corecore