7 research outputs found

    Silicone-Thioxanthone: A Multifunctionalized Visible Light Photoinitiator with an Ability to Modify the Cured Polymers

    No full text
    A silicone-thioxanthone (STX) visible light photoinitiator was prepared by the nucleophilic substitution reaction of 2-[(4-hydroxybenzyl)-(methyl)-amino]-9H-thioxanthen-9-one (TX-HB) and γ-chloropropylmethylpolysiloxane-co-dimethyl-polysiloxane (PSO-Cl). Its structure was confirmed by 1H NMR, 13C NMR, FTIR, UV-vis and GPC. The photopolymerization kinetics of 1, 6-Hexanedioldiacrylate (HDDA) and trimethylolpropane triacrylate (TMPTA) initiated by STX confirmed that STX is an efficient photoinitiator. Its visible light photolysis experiment and the photopolymerization kinetics studies implied that a possible synergistic effect existed between two adjacent thioxanthone groups. Moreover, a higher migration stability was revealed in STX than 2-benzyl (methyl) amino-9H-thioxanthen-9-one (TX-B). STX could change the surface property of the cured film of polyurethane diacrylate prepolymer (PUA) from hydrophilic to hydrophobic, as well as change the thermal stability of the polymer network. Meanwhile, it could improve the resistance against water and acid. Thus, STX is an effective multifunctionalized photoinitiator

    Functionally improved mesenchymal stem cells via nanosecond pulsed electric fields for better treatment of osteoarthritis

    No full text
    Background: Numerous approaches have been utilized to optimize mesenchymal stem cells (MSCs) performance in treating osteoarthritis (OA), however, the constrained diminished activity and chondrogenic differentiation capacity impede their therapeutic efficacy. Previous investigations have successfully shown that pretreatment with nanosecond pulsed electric fields (nsPEFs) significantly enhances the chondrogenic differentiation of MSCs. Therefore, this study aims to explore nsPEFs as a strategy to improve OA therapy by enhancing MSCs' activity and chondrogenic differentiation and also investigate its potential mechanism. Methods: In this study, a million MSCs were carefully suspended within a 0.4-cm gap cuvette and subjected to five pulses of nsPEFs (100 ns at 10 kV/cm, 1 Hz), with a 1-s interval between each pulse. A control group of MSCs was maintained without nsPEFs treatment for comparative analysis. nsPEFs were applied to regulate the MSCs performance and hinder OA progresses. In order to further explore the corresponding mechanism, we examined the changes of MSCs transcriptome after nsPEF pretreatment. Finally, we studied the properties of extracellular vesicles (EVs) secreted by MSCs affected by nsPEF and the therapeutic effect on OA. Results: We found that nsPEFs pretreatment promoted MSCs migration and viability, particularly enhancing their viability temporarily in vivo, which is also confirmed by mRNA sequencing analysis. It also significantly inhibited the development of OA-like chondrocytes in vitro and prevented OA progression in rat models. Additionally, we discovered that nsPEFs pretreatment reprogrammed MSC performance by enhancing EVs production (5.77 ± 0.92 folds), and consequently optimizing their therapeutic potential. Conclusions: In conclusion, nsPEFs pretreatment provides a simple and effective strategy for improving the MSCs performance and the therapeutic effects of MSCs for OA. EVs-nsPEFs may serve as a potent therapeutic material for OA and hold promise for future clinical applications. The translational potential of this article: This study indicates that MSCs pretreated by nsPEFs greatly inhibited the development of OA. nsPEFs pretreatment will be a promising and effective method to optimize the therapeutic effect of MSCs in the future

    NeuroD4 converts glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 antioxidant axis

    No full text
    Abstract Cell fate and proliferation ability can be transformed through reprogramming technology. Reprogramming glioblastoma cells into neuron-like cells holds great promise for glioblastoma treatment, as it induces their terminal differentiation. NeuroD4 (Neuronal Differentiation 4) is a crucial transcription factor in neuronal development and has the potential to convert astrocytes into functional neurons. In this study, we exclusively employed NeuroD4 to reprogram glioblastoma cells into neuron-like cells. In vivo, the reprogrammed glioblastoma cells demonstrated terminal differentiation, inhibited proliferation, and exited the cell cycle. Additionally, NeuroD4 virus-infected xenografts exhibited smaller sizes compared to the GFP group, and tumor-bearing mice in the GFP+NeuroD4 group experienced prolonged survival. Mechanistically, NeuroD4 overexpression significantly reduced the expression of SLC7A11 and Glutathione peroxidase 4 (GPX4). The ferroptosis inhibitor ferrostatin-1 effectively blocked the NeuroD4-mediated process of neuron reprogramming in glioblastoma. To summarize, our study demonstrates that NeuroD4 overexpression can reprogram glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 signaling pathway, thus offering a potential novel therapeutic approach for glioblastoma

    In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units

    No full text
    The regeneration of hierarchical osteochondral units is challenging due to difficulties in inducing spatial, directional and controllable differentiation of mesenchymal stem cells (MSCs) into cartilage and bone compartments. Emerging organoid technology offers new opportunities for osteochondral regeneration. In this study, we developed gelatin-based microcryogels customized using hyaluronic acid (HA) and hydroxyapatite (HYP), respectively for inducing cartilage and bone regeneration (denoted as CH-Microcryogels and OS-Microcryogels) through in vivo self-assembly into osteochondral organoids. The customized microcryogels showed good cytocompatibility and induced chondrogenic and osteogenic differentiation of MSCs, while also demonstrating the ability to self-assemble into osteochondral organoids with no delamination in the biphasic cartilage-bone structure. Analysis by mRNA-seq showed that CH-Microcryogels promoted chondrogenic differentiation and inhibited inflammation, while OS-Microcryogels facilitated osteogenic differentiation and suppressed the immune response, by regulating specific signaling pathways. Finally, the in vivo engraftment of pre-differentiated customized microcryogels into canine osteochondral defects resulted in the spontaneous assembly of an osteochondral unit, inducing simultaneous regeneration of both articular cartilage and subchondral bone. In conclusion, this novel approach for generating self-assembling osteochondral organoids utilizing tailor-made microcryogels presents a highly promising avenue for advancing the field of tissue engineering

    Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration

    No full text
    The main objective of the Mars Ion and Neutral Particle Analyzer (MINPA) aboard the Chinese Mars Exploration Mission (Tianwen-1) is to study the solar wind–Mars interaction by measuring the ions and energetic neutral atoms (ENAs) near Mars. The MINPA integrates ion and ENA measurements into one sensor head, sharing the same electronics box. The MINPA utilizes a standard toroidal top-hat electrostatic analyzer (ESA) followed by a time of flight (TOF) unit to provide measurement of ions with energies from 2.8 eV to 25.9 keV and ENAs from 50 eV to 3 keV with a base time resolution of 4 seconds. Highly polished silicon single crystal substrates with an Al2O3 film coating are used to ionize the ENAs into positive ions. These ions can then be analyzed by the ESA and TOF, to determine the energy and masses of the ENAs. The MINPA provides a 360°×90° field of view (FOV) with 22.5°×5.4° angular resolution for ion measurement, and a 360°×9.7° FOV with 22.5°×9.7° angular resolution for ENA measurement. The TOF unit combines a –15 kV acceleration high voltage with ultra-thin carbon foils to resolve H+, He2+, He+, O+, O2+ and CO2+ for ion measurement and to resolve H and O (≥ 16 amu group) for ENA measurement. Here we present the design principle and describe our ground calibration of the MINP
    corecore