2,769 research outputs found
Steganography in inactive frames of VoIP streams encoded by source codec
This paper describes a novel high capacity steganography algorithm for embedding data in the inactive frames of low bit rate audio streams encoded by G.723.1 source codec, which is used extensively in Voice over Internet Protocol (VoIP). This study reveals that, contrary to existing thoughts, the inactive frames of VoIP streams are more suitable for data embedding than the active frames of the streams, that is, steganography in the inactive audio frames attains a larger data embedding capacity than that in the active audio frames under the same imperceptibility. By analysing the concealment of steganography in the inactive frames of low bit rate audio streams encoded by G.723.1 codec with 6.3kbps, the authors propose a new algorithm for steganography in different speech parameters of the inactive frames. Performance evaluation shows embedding data in various speech parameters led to different levels of concealment. An improved voice activity detection algorithm is suggested for detecting inactive audio frames taking into packet loss account. Experimental results show our proposed steganography algorithm not only achieved perfect imperceptibility but also gained a high data embedding rate up to 101 bits/frame, indicating that the data embedding capacity of the proposed algorithm is very much larger than those of previously suggested algorithms
Network service registration based on role-goal-process-service meta-model in a P2P network
Service composition-based network software customisation is currently a research hotspot in the field of software engineering. A key problem of the hotspot is how to efficiently discover services distributed over the Internet. In the service oriented architecture, service discovery suffers from the performance bottleneck of centralised universal description discovery and integration (UDDI), and inaccurate matching of service semantics. In this study, the authors describe a novel method for service labelling, registration and discovery, which is based on the role-goal-process-service meta-model. This approach enables ones to achieve accurate matching of service semantics by extending web service description language with RGP demand-information. The authors also suggest a peer-to-peer (P2P)-based architecture of service discovery to address the issues in the UDDI bottleneck and the complexity of semantic computation. By adopting the proposed approach, an experiment prototype system has been designed and implemented in Beijing municipal transportation system. The experimental results show the proposed approach is effective in addressing the aforementioned problems
Towards Ultra-High Performance and Energy Efficiency of Deep Learning Systems: An Algorithm-Hardware Co-Optimization Framework
Hardware accelerations of deep learning systems have been extensively
investigated in industry and academia. The aim of this paper is to achieve
ultra-high energy efficiency and performance for hardware implementations of
deep neural networks (DNNs). An algorithm-hardware co-optimization framework is
developed, which is applicable to different DNN types, sizes, and application
scenarios. The algorithm part adopts the general block-circulant matrices to
achieve a fine-grained tradeoff between accuracy and compression ratio. It
applies to both fully-connected and convolutional layers and contains a
mathematically rigorous proof of the effectiveness of the method. The proposed
algorithm reduces computational complexity per layer from O() to O() and storage complexity from O() to O(), both for training and
inference. The hardware part consists of highly efficient Field Programmable
Gate Array (FPGA)-based implementations using effective reconfiguration, batch
processing, deep pipelining, resource re-using, and hierarchical control.
Experimental results demonstrate that the proposed framework achieves at least
152X speedup and 71X energy efficiency gain compared with IBM TrueNorth
processor under the same test accuracy. It achieves at least 31X energy
efficiency gain compared with the reference FPGA-based work.Comment: 6 figures, AAAI Conference on Artificial Intelligence, 201
On the Universal Approximation Property and Equivalence of Stochastic Computing-based Neural Networks and Binary Neural Networks
Large-scale deep neural networks are both memory intensive and
computation-intensive, thereby posing stringent requirements on the computing
platforms. Hardware accelerations of deep neural networks have been extensively
investigated in both industry and academia. Specific forms of binary neural
networks (BNNs) and stochastic computing based neural networks (SCNNs) are
particularly appealing to hardware implementations since they can be
implemented almost entirely with binary operations. Despite the obvious
advantages in hardware implementation, these approximate computing techniques
are questioned by researchers in terms of accuracy and universal applicability.
Also it is important to understand the relative pros and cons of SCNNs and BNNs
in theory and in actual hardware implementations. In order to address these
concerns, in this paper we prove that the "ideal" SCNNs and BNNs satisfy the
universal approximation property with probability 1 (due to the stochastic
behavior). The proof is conducted by first proving the property for SCNNs from
the strong law of large numbers, and then using SCNNs as a "bridge" to prove
for BNNs. Based on the universal approximation property, we further prove that
SCNNs and BNNs exhibit the same energy complexity. In other words, they have
the same asymptotic energy consumption with the growing of network size. We
also provide a detailed analysis of the pros and cons of SCNNs and BNNs for
hardware implementations and conclude that SCNNs are more suitable for
hardware.Comment: 9 pages, 3 figure
- …