1,281 research outputs found

    First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defect

    Full text link
    The thermal conductance in graphene nanoribbon with a vacancy or silicon point defect (substitution of C by Si atom) is investigated by non-equilibrium Green's function (NEGF) formalism combined with first-principle calculations density-functional theory with local density approximation. An efficient correction to the force constant matrix is presented to solve the conflict between the long-range character of the {\it ab initio} approach and the first-nearest-neighboring character of the NEGF scheme. In nanoribbon with a vacancy defect, the thermal conductance is very sensitive to the position of the vacancy defect. A vacancy defect situated at the center of the nanoribbon generates a saddle-like surface, which greatly reduces the thermal conductance by strong scattering to all phonon modes; while an edge vacancy defect only results in a further reconstruction of the edge and slightly reduces the thermal conductance. For the Si defect, the position of the defect plays no role for the value of the thermal conductance, since the defective region is limited within a narrow area around the defect center.Comment: accepted by AP

    Effects of Finite Deformed Length in Carbon Nanotubes

    Full text link
    The effect of finite deformed length is demonstrated by squashing an armchair (10,10) single-walled carbon nanotube with two finite tips. Only when the deformed length is long enough, an effectual metal-semiconductor-metal heterojunction can be formed in the metallic tube. The effect of finite deformed length is explained by the quantum tunnelling effect. Furthermore, some conceptual designs of nanoscale devices are proposed from the metal-semiconductor-metal heterojunction.Comment: 4 pages, 4 figure

    Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias

    Full text link
    The intrinsic transport properties of zigzag graphene nanoribbons (ZGNRs) are investigated using first principles calculations. It is found that although all ZGNRs have similar metallic band structure, they show distinctly different transport behaviors under bias voltages, depending on whether they are mirror symmetric with respect to the midplane between two edges. Asymmetric ZGNRs behave as conventional conductors with linear current-voltage dependence, while symmetric ZGNRs exhibit unexpected very small currents with the presence of a conductance gap around the Fermi level. This difference is revealed to arise from different coupling between the conducting subbands around the Fermi level, which is dependent on the symmetry of the systems.Comment: 4 pages, 4 figure

    Structural Trends Interpretation of the Metal-to-Semiconductor Transition in Deformed Carbon Nanotubes

    Full text link
    Two mechanisms that drive metal-to-semiconductor transitions in single-walled carbon nanotubes are theoretically analyzed through a simple tight-binding model. By considering simple structural trends, the results demonstrate that metal-to-semiconductor transitions can be induced more readily in metallic zigzag nanotubes than in armchair nanotubes. Furthermore, it is shown that both mechanisms have the effect of making the two originally equivalent sublattices physically distinguishable.Comment: 4 pages, 4 figure
    corecore