556 research outputs found

    Standard metabolic rate predicts growth trajectory of juvenile Chinese crucian carp (Carassius auratus) under changing food availability

    Get PDF
    Phenotypic traits vary greatly within populations and can have a significant influence on aspects of performance. The present study aimed to investigate the effects of individual variation in standard metabolic rate (SMR) on growth rate and tolerance to food-deprivation in juvenile crucian carp (Carassius auratus) under varying levels of food availability. To address this issue, 19 high and 16 low SMR (individuals were randomly assigned to a satiation diet for 3 weeks, whereas another 20 high and 16 low SMR individuals were assigned to a restricted diet (approximately 50% of satiation) for the same period. Then, all fish were completely food-deprived for another 3 weeks. High SMR individuals showed a higher growth rate when fed to satiation, but this advantage of SMR did not exist in food-restricted fish. This result was related to improved feeding efficiency with decreased food intake in low SMR individuals, due to their low food processing capacity and maintenance costs. High SMR individuals experienced more mass loss during food-deprivation as compared to low SMR individuals. Our results here illustrate context-dependent costs and benefits of intraspecific variation in SMR whereby high SMR individuals show increased growth performance under high food availability but had a cost under stressful environments (i.e., food shortage)

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Molecular cloning and characterization of the mouse Acdp gene family

    Get PDF
    BACKGROUND: We have recently cloned and characterized a novel gene family named ancient conserved domain protein (ACDP) in humans. To facilitate the functional study of this novel gene family, we have cloned and characterized Acdp, the mouse homologue of the human ACDP gene family. RESULTS: The four Acdp genes (Acdp1, Acdp2, Acdp3 and Acdp4) contain 3,631 bp, 3,244 bp, 2,684 bp and 2,743 bp of cDNA sequences, and encode deduced proteins of 951, 874, 713 and 771 amino acids, respectively. The mouse Acdp genes showed very strong homologies (>90%) in both nucleotide and amino acid sequences to their human counterparts. In addition, both nucleotide and amino acid sequences within the Ancient Conserved Domain (ACD) are highly conserved in many different taxonomic species. Particularly, Acdp proteins showed very strong AA homologies to the bacteria CorC protein (35% AA identity with 55% homology), which is involved in magnesium and cobalt efflux. The Acdp genes are widely expressed in all tissues tested except for Acdp1, which is only highly expressed in the brain with low levels of expression in kidney and testis. Immunostaining of Acdp1 in hippocampus neurons revealed a predominant localization on the plasma membrane. CONCLUSION: The Acdp genes are evolutionarily conserved in diverse species and ubiquitously expressed throughout development and adult tissues suggesting that Acdp may be an essential gene. Acdp showed strong homology to bacteria CorC protein and predominantly localized on the plasma membrane. These results suggest that Acdp is probably a family of proteins involved in ion transport in mammalian cell

    N′-(3,5-Dichloro-2-hydroxy­benzyl­idene)-3-methoxy­benzohydrazide methanol solvate

    Get PDF
    In the title compound, C15H12Cl2N2O3·CH3OH, the Schiff base mol­ecule is nearly planar, with a dihedral angle of 4.5 (2)° between the two benzene rings. An intra­molecular O—H⋯N hydrogen bond is observed. The methanol solvent mol­ecule is linked to the Schiff base mol­ecule through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds

    Promising plasmid DNA vector based on APTES-modified silica nanoparticles

    Get PDF
    Nanoparticles have an enormous potential for development in biomedical applications, such as gene or drug delivery. We developed and characterized aminopropyltriethoxysilane-functionalized silicon dioxide nanoparticles (APTES-SiNPs) for gene therapy. Lipofectamine® 2000, a commonly used agent, served as a contrast. We showed that APTES-SiNPs had a gene transfection efficiency almost equal to that of Lipofectamine 2000, but with lower cytotoxicity. Thus, these novel APTES-SiNPs can achieve highly efficient transfection of plasmid DNA, and to some extent reduce cytotoxicity, which might overcome the critical drawbacks in vivo of conventional carriers, such as viral vectors, organic polymers, and liposomes, and seem to be a promising nonviral gene therapy vector
    • …
    corecore