7,758 research outputs found

    Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets

    Full text link
    Surface acceleration of fast electrons in intense laser-plasma interaction is improved by using sub-wavelength grating targets. The fast electron beam emitted along the target surface was enhanced by more than three times relative to that by using planar target. The total number of the fast electrons ejected from the front side of target was also increased by about one time. The method to enhance the surface acceleration of fast electron is effective for various targets with sub-wavelength structured surface, and can be applied widely in the cone-guided fast ignition, energetic ion acceleration, plasma device, and other high energy density physics experiments.Comment: 14 pages, 4figure

    Nonlinear Transport of Graphene in the Quantum Hall Regime

    Full text link
    We have studied the breakdown of the integer quantum Hall (QH) effect with fully broken symmetry, in an ultra-high mobility graphene device sandwiched between two single crystal hexagonal boron nitride substrates. The evolution and stabilities of the QH states are studied quantitatively through the nonlinear transport with dc Hall voltage bias. The mechanism of the QH breakdown in graphene and the movement of the Fermi energy with the electrical Hall field are discussed. This is the first study in which the stabilities of fully symmetry broken QH states are probed all together. Our results raise the possibility that the v=6 states might be a better target for the quantum resistance standard.Comment: 15 pages,6 figure

    A Raman-Heterodyne Study of the Hyperfine Interaction of the Optically-Excited State 5^5D0_0 of Eu3+^{3+}:Y2_2SiO5_5

    Full text link
    The spin coherence time of 151^{151}Eu3+^{3+} which substitutes the yttrium at site 1 in Y2_2SiO5_5 crystal has been extended to 6 hours in a recent work [\textit{Nature} \textbf{517}, 177 (2015)]. To make this long-lived spin coherence useful for optical quantum memory applications, we experimentally characterize the hyperfine interaction of the optically-excited state 5^5D0_0 using Raman-heterodyne-detected nuclear magnetic resonance. The effective spin Hamiltonians for excited and ground state are fitted based on the experimental spectra obtained in 200 magnetic fields with various orientations. To show the correctness of the fitted parameters and potential application in quantum memory protocols, we also characterize the ground-state hyperfine interaction and predict the critical magnetic field which produces the 6-hour-long coherence time. The complete energy level structure for both the 7^7F0_0 ground state and 5^5D0_0 excited state at the critical magnetic field are obtained. These results enable the design of quantum memory protocols and the optimization of optical pumping strategy for realization of photonic quantum memory with hour-long lifetime

    Lentivirus-mediated RNA interference targeting the H19 gene inhibits cell proliferation and apoptosis in human choriocarcinoma cell line JAR

    Get PDF
    BACKGROUND: H19 is a paternally imprinted gene that has been shown to be highly expressed in the trophoblast tissue. Results from previous studies have initiated a debate as to whether noncoding RNA H19 acts as a tumor suppressor or as a tumor promotor in trophoblast tissue. In the present study, we developed lentiviral vectors expressing H19-specific small interfering RNA (siRNA) to specifically block the expression of H19 in the human choriocarcinoma cell line JAR. Using this approach, we investigated the impact of the H19 gene on the proliferation, invasion and apoptosis of JAR cells. Moreover, we examined the effect of H19 knockdown on the expression of insulin-like growth factor 2 (IGF2), hairy and enhancer of split homologue-1 (HES-1) and dual-specific phosphatase 5 (DUSP5) genes. RESULTS: H19 knockdown inhibited apoptosis and proliferation of JAR cells, but had no significant impact on cell invasion. In addition, H19 knockdown resulted in significant upregulation of HES-1 and DUSP5 expression, but not IGF2 expression in JAR cells. CONCLUSIONS: The finding that H19 downregulation could simultaneously inhibit proliferation and apoptosis of JAR cells highlights a putative dual function for H19 in choriocarcinoma and may explain the debate on whether H19 acts as a tumor suppressor or a tumor promotor in trophoblast tissue. Furthermore, upregulation of HES-1 and DUSP5 may mediate H19 downregulation-induced suppression of proliferation and apoptosis of JAR cells
    corecore