3,141 research outputs found

    Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators?

    Full text link
    Molecular dynamics simulations are performed to investigate edge effects on the quality factor of graphene nanoresonators with different edge configurations and of various sizes. If the periodic boundary condition is applied, very high quality factors (3×1053\times10^{5}) are obtained for all kinds of graphene nanoresonators. However, if the free boundary condition is applied, quality factors will be greatly reduced by two effects resulting from free edges: the imaginary edge vibration effect and the artificial effect. Imaginary edge vibrations will flip between a pair of doubly degenerate warping states during the mechanical oscillation of nanoresonators. The flipping process breaks the coherence of the mechanical oscillation of the nanoresonator, which is the dominant mechanism for extremely low quality factors. There is an artificial effect if the mechanical oscillation of the graphene nanoresonator is actuated according to an artificial vibration (non-natural vibration of the system), which slightly reduce the quality factor. The artificial effect can be eliminated by actuating the mechanical oscillation according to a natural vibration of the nanoresonator. Our simulations provide an explanation for the recent experiment, where the measured quality factor is low and varies between identical samples with free edges.Comment: accepted by J. Appl. Phy

    A theoretical study of thermal conductivity in single-walled boron nitride nanotubes

    Full text link
    We perform a theoretical investigation on the thermal conductivity of single-walled boron nitride nanotubes (SWBNT) using the kinetic theory. By fitting to the phonon spectrum of boron nitride sheet, we develop an efficient and stable Tersoff-derived interatomic potential which is suitable for the study of heat transport in sp2 structures. We work out the selection rules for the three-phonon process with the help of the helical quantum numbers (κ,n)(\kappa, n) attributed to the symmetry group (line group) of the SWBNT. Our calculation shows that the thermal conductivity κph\kappa_{\rm ph} diverges with length as κphLβ\kappa_{\rm ph}\propto L^{\beta} with exponentially decaying β(T)eT/Tc\beta(T)\propto e^{-T/T_{c}}, which results from the competition between boundary scattering and three-phonon scattering for flexure modes. We find that the two flexure modes of the SWBNT make dominant contribution to the thermal conductivity, because their zero frequency locates at κ=±α\kappa=\pm\alpha where α\alpha is the rotational angle of the screw symmetry in SWBNT.Comment: accepted by PR

    Elastic and non-linear stiffness of graphene: a simple approach

    Full text link
    The recent experiment [Science \textbf{321}, 385 (2008)] on the Young's modulus and third-order elastic stiffness of graphene are well explained in a very simple approach, where the graphene is described by a simplified system and the force constant for the non-linear interaction is estimated from the Tersoff-Brenner potential.Comment: 4 pages, 4 figure

    Energy-Delay Tradeoffs of Virtual Base Stations With a Computational-Resource-Aware Energy Consumption Model

    Full text link
    The next generation (5G) cellular network faces the challenges of efficiency, flexibility, and sustainability to support data traffic in the mobile Internet era. To tackle these challenges, cloud-based cellular architectures have been proposed where virtual base stations (VBSs) play a key role. VBSs bring further energy savings but also demands a new energy consumption model as well as the optimization of computational resources. This paper studies the energy-delay tradeoffs of VBSs with delay tolerant traffic. We propose a computational-resource-aware energy consumption model to capture the total energy consumption of a VBS and reflect the dynamic allocation of computational resources including the number of CPU cores and the CPU speed. Based on the model, we analyze the energy-delay tradeoffs of a VBS considering BS sleeping and state switching cost to minimize the weighted sum of power consumption and average delay. We derive the explicit form of the optimal data transmission rate and find the condition under which the energy optimal rate exists and is unique. Opportunities to reduce the average delay and achieve energy savings simultaneously are observed. We further propose an efficient algorithm to jointly optimize the data rate and the number of CPU cores. Numerical results validate our theoretical analyses and under a typical simulation setting we find more than 60% energy savings can be achieved by VBSs compared with conventional base stations under the EARTH model, which demonstrates the great potential of VBSs in 5G cellular systems.Comment: 5 pages, 3 figures, accepted by ICCS'1

    First principle study of the thermal conductance in graphene nanoribbon with vacancy and substitutional silicon defect

    Full text link
    The thermal conductance in graphene nanoribbon with a vacancy or silicon point defect (substitution of C by Si atom) is investigated by non-equilibrium Green's function (NEGF) formalism combined with first-principle calculations density-functional theory with local density approximation. An efficient correction to the force constant matrix is presented to solve the conflict between the long-range character of the {\it ab initio} approach and the first-nearest-neighboring character of the NEGF scheme. In nanoribbon with a vacancy defect, the thermal conductance is very sensitive to the position of the vacancy defect. A vacancy defect situated at the center of the nanoribbon generates a saddle-like surface, which greatly reduces the thermal conductance by strong scattering to all phonon modes; while an edge vacancy defect only results in a further reconstruction of the edge and slightly reduces the thermal conductance. For the Si defect, the position of the defect plays no role for the value of the thermal conductance, since the defective region is limited within a narrow area around the defect center.Comment: accepted by AP

    Edge states induce boundary temperature jump in molecular dynamics simulation of heat conduction

    Full text link
    We point out that the origin of the commonly occurred boundary temperature jump in the application of No\'se-Hoover heat bath in molecular dynamics is related to the edge modes, which are exponentially localized at the edge of the system. If heat baths are applied to these edge regions, the injected thermal energy will be localized thus leading to a boundary temperature jump. The jump can be eliminated by shifting the location of heat baths away from edge regions. Following this suggestion, a very good temperature profile is obtained without increasing any simulation time, and the accuracy of thermal conductivity calculated can be largely improved.Comment: accepted by PRB, brief report, references added, typo correcte

    Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism

    Full text link
    Thermal conductivity of graphene nanoribbons (GNR) with length 106~{\AA} and width 4.92~{\AA} after isotopic doping is investigated by molecular dynamics with quantum correction. Two interesting phenomena are found: (1) isotopic doping reduces thermal conductivity effectively in low doping region, and the reduction slows down in high doping region; (2) thermal conductivity increases with increasing temperature in both pure and doped GNR; but the increasing behavior is much more slowly in the doped GNR than that in pure ones. Further studies reveal that the physics of these two phenomena is related to the localized phonon modes, whose number increases quickly (slowly) with increasing isotopic doping in low (high) isotopic doping region.Comment: 6 fig
    corecore