3,720 research outputs found

    Pathogenetic role of tissue factor in graft-versus-host disease

    Get PDF
    Graft-versus-host disease (GVHD) is a serious complication after allogeneic stem cell transplantation, the mechanism of it is still not elucidated. Recent findings suggest that host endothelial cells are a target of alloreactive donor cytotoxic T lymphocytes in GVHD and tissue factor (TF) plays an important role not only in coagulation-inflammation cycle, but also in transplant immunology. We postulate TF expression in vascular endothelial cells(VEC) may play an pivotal role in the pathogenesis of GVHD. TF gene andprotein expression in target organs of GVHD in aGVHD mice was significantly elevated compared to that of controls as determined by real-time PCR and Western blotting. Allogeneic CD4^+^T cell and CD8^+^T cells enhanced TF, VCAM-1, TNF-[alpha], IFN-[gamma] and IL-6 expression in TNF-[alpha] prestimulated HUVECs compared to controls as determined by flowcytometry and real-time PCR. JNK and p38MAPK mediated allogeneic T cells-induced TF expression in HUVECs. These effects were largely prevented by monoclonal antibody against TF, SB203580 and SP600125. In concert, these data provide strong evidence that upregulated TF expression is related to tissue damage caused by GVHD, TF isthe key factor in GVHD mediated by endothelial cells and allogeneic T cells-induced TF and consecutive proinflammatory cytokines expression in VEC contribute to the pathogenesis of GVHD

    Thermodynamics of SU(2) bosons in one dimension

    Full text link
    On the basis of Bethe ansatz solution of two-component bosons with SU(2) symmetry and δ\delta-function interaction in one dimension, we study the thermodynamics of the system at finite temperature by using the strategy of thermodynamic Bethe ansatz (TBA). It is shown that the ground state is an isospin "ferromagnetic" state by the method of TBA, and at high temperature the magnetic property is dominated by Curie's law. We obtain the exact result of specific heat and entropy in strong coupling limit which scales like TT at low temperature. While in weak coupling limit, it is found there is still no Bose-Einstein Condensation (BEC) in such 1D system.Comment: 7 page

    One dimensional model for doubly degenerate electrons

    Get PDF
    A Hubbard-like model with SU(4) symmetry for electrons with two-fold orbital degeneracy is studied extensively. Exact solution in one dimension is derived by means of Bethe ansatz, where the sites are supposed to be occupied by at most two electrons. The features of ground state and excited states for repulsive coupling are shown. For finite N number of electrons, the configurations of quantum numbers are given explicitly and the spectra of excitations are obtained by solving the Bethe-ansatz equation numerically. For infinite N, the ground state and various kinds of low-lying excitations are obtained on the basis of thermodynamics limit.Comment: Revtex, 21 pages including 9 figures, PRB versio

    Numerical and Monte Carlo Bethe ansatz method: 1D Heisenberg model

    Get PDF
    In this paper we present two new numerical methods for studying thermodynamic quantities of integrable models. As an example of the effectiveness of these two approaches, results from numerical solutions of all sets of Bethe ansatz equations, for small Heisenberg chains, and Monte Carlo simulations in quasi-momentum space, for a relatively larger chains, are presented. Our results agree with those obtained by thermodynamics Bethe ansatz (TBA) and Quantum Transfer Matrix (QTM).Comment: 8 pages, 6 figure

    Smart Pacing for Effective Online Ad Campaign Optimization

    Full text link
    In targeted online advertising, advertisers look for maximizing campaign performance under delivery constraint within budget schedule. Most of the advertisers typically prefer to impose the delivery constraint to spend budget smoothly over the time in order to reach a wider range of audiences and have a sustainable impact. Since lots of impressions are traded through public auctions for online advertising today, the liquidity makes price elasticity and bid landscape between demand and supply change quite dynamically. Therefore, it is challenging to perform smooth pacing control and maximize campaign performance simultaneously. In this paper, we propose a smart pacing approach in which the delivery pace of each campaign is learned from both offline and online data to achieve smooth delivery and optimal performance goals. The implementation of the proposed approach in a real DSP system is also presented. Experimental evaluations on both real online ad campaigns and offline simulations show that our approach can effectively improve campaign performance and achieve delivery goals.Comment: KDD'15, August 10-13, 2015, Sydney, NSW, Australi
    • …
    corecore