3,423 research outputs found
Impacts of rural dual economic transformation on the inverted-U curve of rural income inequality: An empirical study of Tianjin and Shandong provinces in the People's Republic of China
Using a case study about rural Tianjin and Shandong provinces, we try to explain what mechanism affects income inequality in rural areas, especially how rural dual structural transformation leads to the income inequality "inverted-U" Curve in some developed areas in the People's Republic of China (PRC). We choose Tianjin to represent developed provinces, which depend on nonagricultural and urban agricultural development modes, and take Shandong Province to represent areas dominated by traditional agriculture. We can clearly observe that the changes in rural income inequality are roughly consistent with the changes in dual economic transformation in different regions. A marginal decomposition analysis on the Gini coefficient changes of income inequality shows that the distribution effect always accounts for the dominant position and determines the inequality change direction, both in Tianjin and Shandong. By comparison, we find that the dual transformation is sure to affect and change the sectoral labor participation rate directly, and then affect and change the within-sector income inequality, and further to make total income inequality go up or down. Through this empirical and comparative study, we suggest some policies to both grow rural income and reduce income inequality in rural PRC, which means accelerating growth in order to go beyond the "inverted-U curve" turning point
AMPK- mediated formation of stress granules is required for dietary restriction- induced longevity in Caenorhabditis elegans
Stress granules (SGs) are nonmembranous organelles that are dynamically assembled and disassembled in response to various stressors. Under stressed conditions, polyadenylated mRNAs and translation factors are sequestrated in SGs to promote global repression of protein synthesis. It has been previously demonstrated that SG formation enhances cell survival and stress resistance. However, the physiological role of SGs in organismal aging and longevity regulation remains unclear. In this study, we used TIAR- 1::GFP and GTBP- 1::GFP as markers to monitor the formation of SGs in Caenorhabditis elegans. We found that, in addition to acute heat stress, SG formation could also be triggered by dietary changes, such as starvation and dietary restriction (DR). We found that HSF- 1 is required for the SG formation in response to acute heat shock and starvation but not DR, whereas the AMPK- eEF2K signaling is required for starvation and DR- induced SG formation but not heat shock. Moreover, our data suggest that this AMPK- eEF2K pathway- mediated SG formation is required for lifespan extension by DR, but dispensable for the longevity by reduced insulin/IGF- 1 signaling. Collectively, our findings unveil a novel role of SG formation in DR- induced longevity.In addition to heat stress, starvation and dietary restriction (DR) can activate stress granule (SG) formation in Caenorhabditis elegans. HSF- 1 and AMPK are two key regulators for the SG formations. HSF- 1 is required for the SG formation in response to acute heat shock and starvation but not DR, whereas the AMPK- eEF2K pathway is required for starvation and DR- induced SG formation but not heat shock. Furthermore, AMPK- mediated SG formation contributes to DR- induced longevity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/1/acel13157-sup-0008-Figurelegends.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/2/acel13157-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/3/acel13157-sup-0006-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/4/acel13157-sup-0007-TableS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/5/acel13157-sup-0005-FigS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/6/acel13157-sup-0003-FigS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/7/acel13157.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/8/acel13157-sup-0002-FigS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/9/acel13157-sup-0004-FigS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155936/10/acel13157_am.pd
A Lattice Study of Near-threshold Scattering
In this exploratory lattice study, low-energy near threshold scattering of
the meson system is analyzed using lattice QCD with
twisted mass fermion configurations. Both s-wave () and p-wave
() channels are investigated. It is found that the interaction between
the two charmed mesons is attractive near the threshold in both channels. This
calculation provides some hints in the searching of resonances or bound states
around the threshold of system.Comment: 20 pages, 15 figures, matches the version on PR
Kondo Signatures of a Quantum Magnetic Impurity in Topological Superconductors
We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs support a robust impurity spin doublet ground state and an isotropic spin correlation. These findings advance fundamental knowledge of novel Kondo phenomena in TSCs and suggest experimental avenues for their detection and distinction
Two Photon Decays of from Lattice QCD
We present an exploratory lattice study for the two-photon decay of
using twisted mass lattice QCD gauge configurations generated by the
European Twisted Mass Collaboration. Two different lattice spacings of
fm and fm are used in the study, both of which are of
physical size of 2. The decay widths are found to be KeV for the
coarser lattice and KeV for the finer lattice respectively where the
errors are purely statistical. A naive extrapolation towards the continuum
limit yields KeV which is smaller than the previous
quenched result and most of the current experimental results. Possible reasons
are discussed.Comment: 13 pages, 7 figures; matches the published versio
- âŠ