15,582 research outputs found
Tuning thermal transport in nanotubes with topological defects
Using the atomistic nonequilibrium Green's function, we find that thermal
conductance of carbon nanotubes with presence of topological lattice imperfects
is remarkably reduced, due to the strong Rayleigh scattering of high-frequency
phonons. Phonon transmission across multiple defects behaves as a cascade
scattering based with the random phase approximation. We elucidate that phonon
scattering by structural defects is related to the spatial fluctuations of
local vibrational density of states (LVDOS). An effective method of tuning
thermal transport in low-dimensional systems through the modulation of LVDOS
has been proposed. Our findings provide insights into experimentally
controlling thermal transport in nanoscale devicesComment: 10 pages, 3 figure
Two-orbital Systems with Crystal Field Splitting and Interorbital Hopping
The nondegenerate two-orbital Hubbard model is studied within the dynamic
mean-field theory to reveal the influence of two important factors, i.e.
crystal field splitting and interorbital hopping, on orbital selective Mott
transition (OSMT) and realistic compound CaSrRuO. A
distinctive feature of the optical conductivity of the two nondegenerate bands
is found in OSMT phase, where the metallic character of the wide band is
indicated by a nonzero Drude peak, while the insulating narrow band has its
Drude peak drop to zero in the mean time. We also find that the OSMT regime
expands profoundly with the increase of interorbital hopping integrals. On the
contrary, it is shown that large and negative level splitting of the two
orbitals diminishes the OSMT regime completely. Applying the present findings
to compound CaSrRuO, we demonstrate that in the doping
region from to 2.0, the negative level splitting is unfavorable to the
OSMT phase.Comment: 7 pages with 5 figure
- …