16,247 research outputs found
Evidence for A Two-dimensional Quantum Wigner Solid in Zero Magnetic Field
We report the first experimental observation of a characteristic nonlinear
threshold behavior from dc dynamical response as an evidence for a Wigner
crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The
system under increasing current drive exhibits voltage oscillations with
negative differential resistance. They confirm the coexistence of a moving
crystal along with striped edge states as observed for electrons on helium
surfaces. However, the threshold is well below the typical classical levels due
to a different pinning and depinning mechanism that is possibly related to a
quantum process
Characteristics of phonon transmission across epitaxial interfaces: a lattice dynamic study
Phonon transmission across epitaxial interfaces is studied within the lattice
dynamic approach. The transmission shows weak dependence on frequency for the
lattice wave with a fixed angle of incidence. The dependence on azimuth angle
is found to be related to the symmetry of the boundary interface. The
transmission varies smoothly with the change of the incident angle. A critical
angle of incidence exists when the phonon is incident from the side with large
group velocities to the side with low ones. No significant mode conversion is
observed among different acoustic wave branches at the interface, except when
the incident angle is near the critical value. Our theoretical result of the
Kapitza conductance across the Si-Ge (100) interface at temperature
K is 4.6\times10^{8} {\rm WK}^{-1}{\rmm}^{-2}. A scaling law at low temperature is also reported. Based on the features of
transmission obtained within lattice dynamic approach, we propose a simplified
formula for thermal conductanceacross the epitaxial interface. A reasonable
consistency is found between the calculated values and the experimentally
measured ones.Comment: 8 figure
- …