10 research outputs found

    Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset

    Full text link
    Decentralized multiagent planning has been an important field of research in robotics. An interesting and impactful application in the field is decentralized vehicle coordination in understructured road environments. For example, in an intersection, it is useful yet difficult to deconflict multiple vehicles of intersecting paths in absence of a central coordinator. We learn from common sense that, for a vehicle to navigate through such understructured environments, the driver must understand and conform to the implicit "social etiquette" observed by nearby drivers. To study this implicit driving protocol, we collect the Berkeley DeepDrive Drone dataset. The dataset contains 1) a set of aerial videos recording understructured driving, 2) a collection of images and annotations to train vehicle detection models, and 3) a kit of development scripts for illustrating typical usages. We believe that the dataset is of primary interest for studying decentralized multiagent planning employed by human drivers and, of secondary interest, for computer vision in remote sensing settings.Comment: 6 pages, 10 figures, 1 tabl

    Student groups of complementary skills developing artificial intelligence solutions for natural sciences -- an authentic research education approach suitable for wide adoption

    Full text link
    We report a methodology in which students gain experience in authentic research by developing artificial intelligence (AI) solutions for researchers in natural sciences. While creating education benefits for students, our approach also directly benefits scientists, who get an opportunity to evaluate the usefulness of machine learning for their specific needs. In order to accomplish this, we work with research laboratories that reveal/specify the needs they have, and then our student teams work on the discovery, design, and development of an AI solution for unique problems using a consulting-like arrangement. Our design addresses common barriers which appear in most existing authentic research education approaches and thus is suitable for wide adoption at various schools. To date, our group has been operating at New York University (NYU) for five consecutive semesters and has engaged more than seventy students, ranging from first-year college students to master's candidates, and worked on more than 15 projects with 14 collaborators

    Identification of the Proliferation/Differentiation Switch in the Cellular Network of Multicellular Organisms

    Get PDF
    The proteinā€“protein interaction networks, or interactome networks, have been shown to have dynamic modular structures, yet the functional connections between and among the modules are less well understood. Here, using a new pipeline to integrate the interactome and the transcriptome, we identified a pair of transcriptionally anticorrelated modules, each consisting of hundreds of genes in multicellular interactome networks across different individuals and populations. The two modules are associated with cellular proliferation and differentiation, respectively. The proliferation module is conserved among eukaryotic organisms, whereas the differentiation module is specific to multicellular organisms. Upon differentiation of various tissues and cell lines from different organisms, the expression of the proliferation module is more uniformly suppressed, while the differentiation module is upregulated in a tissue- and species-specific manner. Our results indicate that even at the tissue and organism levels, proliferation and differentiation modules may correspond to two alternative states of the molecular network and may reflect a universal symbiotic relationship in a multicellular organism. Our analyses further predict that the proteins mediating the interactions between these modules may serve as modulators at the proliferation/differentiation switch
    corecore