353 research outputs found

    Optimizing Mentor-Student Communication with Symbolic Design for Message States

    Full text link
    In the mentor-student communication process, students often struggle to receive prompt and clear guidance from their mentors, making it challenging to determine their next steps. When mentors don't respond promptly, it can lead to student confusion, as they may be uncertain whether their message has been acknowledged without resulting action. Instead of the binary options of "read" and "unread," there's a pressing need for more nuanced descriptions of message states. To tackle this ambiguity, we've developed a set of symbols to precisely represent the cognitive states associated with messages in transit. Through experimentation, this design not only assists mentors and students in effectively labeling their responses but also mitigates unnecessary misunderstandings. By utilizing symbols for accurate information and understanding state marking, we've enhanced communication efficiency between mentors and students, thereby improving the quality and efficacy of communication in mentor-student relationships

    Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The regulation of protein phosphorylation requires a balance in the activity of protein kinases and protein phosphatases. Our previous data indicates that Src can increase ERK activity through Raf kinase in response to ischemic stimuli. This study examined the molecular mechanisms by which Src activates ERK cascade through protein phosphatases following cerebral ischemia.</p> <p>Results</p> <p>Ischemia-induced Src activation is followed by phosphorylation of PP2A at Tyr307 leading to its inhibition in the rat hippocampus. SU6656, a Src inhibitor, up-regulates PP2A activity, resulting in a significant decreased activity in ERK and its targets, CREB and ERα. In addition, the PP2A inhibitor, cantharidin, led to an up-regulation of ERK activity and was able to counteract Src inhibition during ischemia.</p> <p>Conclusion</p> <p>Src induces up-regulation of ERK activity and its target transcription factors, CREB and ERα, through attenuation of PP2A activity. Therefore, activation of ERK is the result of a crosstalk between two pathways, Raf-dependent positive regulators and PP2A-dependent negative regulators.</p

    Giant photoinduced lattice distortion in oxygen-vacancy ordered SrCoO2.5 thin films

    Full text link
    Despite of the tremendous efforts spent on the oxygen vacancy migration in determining the property optimization of oxygen-vacancy enrichment transition metal oxides, few has focused on their dynamic behaviors non-equilibrium states. In this work, we performed multi-timescale ultrafast X-ray diffraction measurements by using picosecond synchrotron X-ray pulses and femtosecond table-top X-ray pulses to monitor the structural dynamics in the oxygen-vacancy ordered SrCoO2.5 thin films. A giant photoinduced strain ({\Delta}c/c > 1%) was observed, whose distinct correlation with the pump photon energy indicates a non-thermal origin of the photoinduced strain. The sub-picosecond resolution X-ray diffraction reveals the formation and propagation of the coherent acoustic phonons inside the film. We also simulate the effect of photoexcited electron-hole pairs and the resulting lattice changes using the Density Function Theory method to obtain further insight on the microscopic mechanism of the measured photostriction effect. Comparable photostrictive responses and the strong dependence on excitation wavelength are predicted, revealing a bonding to anti-bonding charge transfer or high spin to intermediate spin crossover induced lattice expansion in the oxygen-vacancy films.Comment: 12 pages, 4 figures, support materia

    Fiber Optic Vibration Sensor Based on the Tilted Fiber Bragg Grating

    Get PDF
    A temperature-insensitive fiber optic vibration sensor based on the tilted fiber Bragg grating (TFBG) is presented. The sensing head is formed by insertion of a small section of MMF between a single-mode fiber and the TFBG. The reflection light from this tilted fiber Bragg grating includes two parts: the reflected Bragg mode and the cladding modes. The cladding modes were coupled back into the core mode as a function of the multimode fiber. The power of the cladding modes is sensitive to vibration, so the external vibration measurement can be obtained through the cladding mode average output power. Experiment results show that the root mean square (RMS) of the detection error of the average power was 0.01 μW within the temperature range from 20 to 70°C, so it is proved to be temperature independent; its frequency response has been tested to 1 KHz

    Highly active and stable AuNi dendrites as an electrocatalyst for the oxygen reduction reaction in alkaline media

    Get PDF
    AuNi hierarchical dendrites were fabricated by a facile electrodeposition and dealloying method with exceptional ORR activity and remarkable long-term stability.</p

    Integration of Metabolomics and Transcriptomics Reveals the Therapeutic Mechanism Underlying Paeoniflorin for the Treatment of Allergic Asthma

    Get PDF
    Objectives: Asthma is a chronic airway inflammatory disease, which is characterized by airway remodeling, hyperreactivity and shortness of breath. Paeoniflorin is one of the major active ingredients in Chinese peony, which exerts anti-inflammatory and immune-regulatory effects in multiple diseases. However, it remains unclear whether paeoniflorin treatment can suppress allergic asthma.Methods: In this study, we evaluated the effect of paeoniflorin on lung function and airway inflammation in asthmatic mice. These asthmatic Balb/c mice were first sensitized and constructed through ovalbumin (OVA) motivation. Subsequently, we determined the mechanism of action of paeoniflorin in treating allergic asthma through integrated transcriptomic and metabolomic data sets.Results: Our results demonstrated that many genes and metabolites were regulated in the paeoniflorin-treated mice. Moreover, the potential target proteins of paeoniflorin played important roles in fatty acid metabolism, inflammatory response, oxidative stress and local adhesion.Conclusion: Paeoniflorin has a beneficial effect on asthma, which may be achieved through regulating fatty acid metabolism, inflammatory response and the adhesion pathway at system level

    Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neural tissue has limited potential to self-renew after neurological damage. Cell therapy using BM-MSCs (bone marrow mesenchymal stromal cells) seems like a promising approach for the treatment of neurological diseases. However, the neural differentiation of stem cells influenced by massive factors and interactions is not well studied at present.</p> <p>Results</p> <p>In this work, we isolated and identified MSCs from mouse bone marrow. Co-cultured with CART (0.4 nM) for six days, BM-MSCs were differentiated into neuron-like cells by the observation of optical microscopy. Immunofluorescence demonstrated that the differentiated BM-MSCs expressed neural specific markers including MAP-2, Nestin, NeuN and GFAP. In addition, NeuN positive cells could co-localize with TH or ChAT by double-labled immunofluorescence and Nissl bodies were found in several differentiated cells by Nissl stain. Furthermore, BDNF and NGF were increased by CART using RT-PCR.</p> <p>Conclusion</p> <p>This study demonstrated that CART could promote the differentiation of BM-MSCs into neural cells through increasing neurofactors, including BNDF and NGF. Combined application of CART and BM-MSCs may be a promising cell-based therapy for neurological diseases.</p

    A flexible and accurate total variation and cascaded denoisers-based image reconstruction algorithm for hyperspectrally compressed ultrafast photography

    Full text link
    Hyperspectrally compressed ultrafast photography (HCUP) based on compressed sensing and the time- and spectrum-to-space mappings can simultaneously realize the temporal and spectral imaging of non-repeatable or difficult-to-repeat transient events passively in a single exposure. It possesses an incredibly high frame rate of tens of trillions of frames per second and a sequence depth of several hundred, and plays a revolutionary role in single-shot ultrafast optical imaging. However, due to the ultra-high data compression ratio induced by the extremely large sequence depth as well as the limited fidelities of traditional reconstruction algorithms over the reconstruction process, HCUP suffers from a poor image reconstruction quality and fails to capture fine structures in complex transient scenes. To overcome these restrictions, we propose a flexible image reconstruction algorithm based on the total variation (TV) and cascaded denoisers (CD) for HCUP, named the TV-CD algorithm. It applies the TV denoising model cascaded with several advanced deep learning-based denoising models in the iterative plug-and-play alternating direction method of multipliers framework, which can preserve the image smoothness while utilizing the deep denoising networks to obtain more priori, and thus solving the common sparsity representation problem in local similarity and motion compensation. Both simulation and experimental results show that the proposed TV-CD algorithm can effectively improve the image reconstruction accuracy and quality of HCUP, and further promote the practical applications of HCUP in capturing high-dimensional complex physical, chemical and biological ultrafast optical scenes.Comment: 25 pages, 5 figures and 1 tabl
    • …
    corecore