332 research outputs found
Reap the Harvest on Blockchain: A Survey of Yield Farming Protocols
Yield farming represents an immensely popular asset management activity in
decentralized finance (DeFi). It involves supplying, borrowing, or staking
crypto assets to earn an income in forms of transaction fees, interest, or
participation rewards at different DeFi marketplaces. In this systematic
survey, we present yield farming protocols as an aggregation-layer constituent
of the wider DeFi ecosystem that interact with primitive-layer protocols such
as decentralized exchanges (DEXs) and protocols for loanable funds (PLFs). We
examine the yield farming mechanism by first studying the operations encoded in
the yield farming smart contracts, and then performing stylized, parameterized
simulations on various yield farming strategies. We conduct a thorough
literature review on related work, and establish a framework for yield farming
protocols that takes into account pool structure, accepted token types, and
implemented strategies. Using our framework, we characterize major yield
aggregators in the market including Yearn Finance, Beefy, and Badger DAO.
Moreover, we discuss anecdotal attacks against yield aggregators and generalize
a number of risks associated with yield farming.Comment: arXiv admin note: text overlap with arXiv:2105.1389
From Banks to DeFi: the Evolution of the Lending Market
The Internet of Value (IoV) with its distributed ledger technology (DLT) underpinning has created new forms of lending markets. As an integral part of the decentralised finance (DeFi) ecosystem, lending protocols are gaining tremendous traction, holding an aggregate liquidity supply of over $40 billion at the time of writing. In this paper, we enumerate the challenges of traditional money markets led by banks and lending platforms and present advantageous characteristics of DeFi lending protocols that might help resolve deep-rooted issues in the conventional lending environment. With the examples of Maker, Compound and Aave, we describe in detail the mechanism of DeFi lending protocols. We discuss the persisting reliance of DeFi lending on the traditional financial system and conclude with the outlook of the lending market in the IoV era
SoK: Yield Aggregators in DeFi
Yield farming has been an immensely popular activity for cryptocurrency holders since the explosion of Decentralized Finance (DeFi) in the summer of 2020. In this Systematization of Knowledge (SoK), we study a general framework for yield farming strategies with empirical analysis. First, we summarize the fundamentals of yield farming by focusing on the protocols and tokens used by aggregators. We then examine the sources of yield and translate those into three example yield farming strategies, followed by the simulations of yield farming performance, based on these strategies. We further compare four major yield aggregators - Idle, Pickle, Harvest and Yearn - in the ecosystem, along with brief introductions of others. We systematize their strategies and revenue models, and conduct an empirical analysis with on-chain data from example vaults, to find a plausible connection between data anomalies and historical events. Finally, we discuss the benefits and risks of yield aggregators
Blind Omnidirectional Image Quality Assessment with Viewport Oriented Graph Convolutional Networks
Quality assessment of omnidirectional images has become increasingly urgent
due to the rapid growth of virtual reality applications. Different from
traditional 2D images and videos, omnidirectional contents can provide
consumers with freely changeable viewports and a larger field of view covering
the spherical surface, which makes the objective
quality assessment of omnidirectional images more challenging. In this paper,
motivated by the characteristics of the human vision system (HVS) and the
viewing process of omnidirectional contents, we propose a novel Viewport
oriented Graph Convolution Network (VGCN) for blind omnidirectional image
quality assessment (IQA). Generally, observers tend to give the subjective
rating of a 360-degree image after passing and aggregating different viewports
information when browsing the spherical scenery. Therefore, in order to model
the mutual dependency of viewports in the omnidirectional image, we build a
spatial viewport graph. Specifically, the graph nodes are first defined with
selected viewports with higher probabilities to be seen, which is inspired by
the HVS that human beings are more sensitive to structural information. Then,
these nodes are connected by spatial relations to capture interactions among
them. Finally, reasoning on the proposed graph is performed via graph
convolutional networks. Moreover, we simultaneously obtain global quality using
the entire omnidirectional image without viewport sampling to boost the
performance according to the viewing experience. Experimental results
demonstrate that our proposed model outperforms state-of-the-art full-reference
and no-reference IQA metrics on two public omnidirectional IQA databases
No-Reference Quality Assessment for 360-degree Images by Analysis of Multi-frequency Information and Local-global Naturalness
360-degree/omnidirectional images (OIs) have achieved remarkable attentions
due to the increasing applications of virtual reality (VR). Compared to
conventional 2D images, OIs can provide more immersive experience to consumers,
benefitting from the higher resolution and plentiful field of views (FoVs).
Moreover, observing OIs is usually in the head mounted display (HMD) without
references. Therefore, an efficient blind quality assessment method, which is
specifically designed for 360-degree images, is urgently desired. In this
paper, motivated by the characteristics of the human visual system (HVS) and
the viewing process of VR visual contents, we propose a novel and effective
no-reference omnidirectional image quality assessment (NR OIQA) algorithm by
Multi-Frequency Information and Local-Global Naturalness (MFILGN).
Specifically, inspired by the frequency-dependent property of visual cortex, we
first decompose the projected equirectangular projection (ERP) maps into
wavelet subbands. Then, the entropy intensities of low and high frequency
subbands are exploited to measure the multi-frequency information of OIs.
Besides, except for considering the global naturalness of ERP maps, owing to
the browsed FoVs, we extract the natural scene statistics features from each
viewport image as the measure of local naturalness. With the proposed
multi-frequency information measurement and local-global naturalness
measurement, we utilize support vector regression as the final image quality
regressor to train the quality evaluation model from visual quality-related
features to human ratings. To our knowledge, the proposed model is the first
no-reference quality assessment method for 360-degreee images that combines
multi-frequency information and image naturalness. Experimental results on two
publicly available OIQA databases demonstrate that our proposed MFILGN
outperforms state-of-the-art approaches
Poopćena metoda razvoja po jacobijevim eliptičkim funkcijama i primjene na nelinearne valne jednadžbe
In this work an extended Jacobian elliptic function expansion method is applied to construct the exact periodic solutions of two nonlinear wave equations. The periodic solutions obtained by this method can be reduced to the solitary wave solutions under certain limiting conditions.Primijenili smo proširenu metodu razvoja po Jacobijevim eliptičkim funkcijama za izvod točnih periodičnih rješenja dviju nelinearnih valnih jednadžbi. Periodična rješenja koja smo izveli tom metodom svode se na solitonska rješenja u određenim graničnim uvjetima
- …