62 research outputs found

    Integrated natural disasters risk management in tourism destination - A case study of 5.12 WenChuan Earthquake

    Get PDF
    The paper found some problems by research of tourism administration in Si Chuan when dealing with 512 WenChuan Earthquake, which include both confused management system and misunderstanding of disaster risk management concept. It showed that earthquake forecasting or prediction is essentially a misconception in earthquake disaster reduction by extensive analyzing both from the theory and the practice. It can hardly give a definite forecasting according to the current technology and it's no use of reducing the impacts of disasters. The paper emphasized it is necessary to change ideas for government and stokeholds on natural disaster and implement risk management of disasters. It's impossible to avoid a natural disaster but could reduce the impacts with maximum from a disaster by risk management. It's an effective approach to enhance the vulnerability and minimize the losses. It will become a better methodology to confront the natural disaster in the future

    Attenuation of Relapsing Fever Neuroborreliosis in Mice by IL-17A Blockade

    Get PDF
    Relapsing fever due to Borrelia hermsiiis characterized by recurrent bacteremia episodes. However, infection of B. hermsii, if not treated early, can spread to various organs including the central nervous system (CNS). CNS disease manifestations are commonly referred to as relapsing fever neuroborreliosis (RFNB). In the mouse model of B. hermsiiinfection, we have previously shown that the development of RFNB requires innate immune cells as well as T cells. Here, we found that prior to the onset of RFNB, an increase in the systemic proinflammatory cytokine response followed by sustained levels of IP-10 concurrent with the CNS disease phase. RNA sequencing analysis of the spinal cord tissue during the disease phase revealed an association of the interleukin (IL)-17 signaling pathway in RFNB. To test a possible role for IL-17 inRFNB, we compared B. hermsii infection in wild-type and IL-17A2/2mice. Although the onset of bacteremia and protective anti-B. hermsii antibody responses occurred similarly, the blood-brain barrier permeability, proinflammatory cytokine levels, immune cell infiltration in the spinal cord, and RFNB manifestations were significantly diminished in IL-17A2/2mice compared to wild-type mice. Treatment of B. hermsii-infected wild-type mice with anti-IL-17A antibody ameliorated the severity of spinal cord inflammation, microglial cell activation, and RFNB. These data suggest that the IL-17signaling pathway plays a major role in the pathogenesis of RFNB, and IL-17A blockade may be a therapeutic modality for controlling neuroborreliosis

    Application of Principal Component Analysis-Assisted Neural Networks for the Rotor Blade Load Prediction

    No full text
    This paper presents a novel approach of principal component analysis- (PCA-) assisted back propagation (BP) neural networks for the problem of rotor blade load prediction. 86.5 hours of real flight data were collected from many steady-state and transient flight maneuvers at different altitudes and airspeeds. Prediction of the blade loads was determined by the PCA-BP model from 16 flight parameters measured and monitored by the flight control computer already present in the helicopter. PCA was applied to reduce the dimension of the flight parameters influencing the component load and eliminate the correlation among flight parameters. Thus, obtained principal components were used as input vectors of the BP neural network. The combined PCA-BP neural network model was trained and tested by real flight data. Comparison of this model and to a BP neural network model as well as to a multiple linear regression (MLR) model was also done. The results of comparison demonstrate that the PCA-BP model has higher prediction precision with an average error of 2.46%, while 4.49% for BP and 10.20% for MLR. The results also reveal that the PCA-BP model has a shorter convergence path than the BP model. This method not only is useful in establishing the load spectra of helicopter rotor in-service where installation of strain gauges is impractical but also can reduce the cost of installation and maintenance measured by strain gauges

    Multi-Objective Optimization Design and Multi-Physics Analysis a Double-Stator Permanent-Magnet Doubly Salient Machine

    No full text
    The double-stator permanent-magnet doubly salient (DS-PMDS) machine is an interesting candidate motor for electric vehicle (EV) applications because of its high torque output and flexible working modes. Due to the complexity of the motor structure, optimization of the DS-PMDS for EVs requires more research efforts to meet multiple specifications. Effective multi-objective optimization to increase torque output, reduce torque ripple, and improve PM material utilization and motor efficiency is implemented in this paper. In the design process, a multi-objective comprehensive function is established. By using parametric sensitivity analysis (PSA) and the sequential quadratic programming (NLPQL) method, the influence extent of each size parameter for different performance is effectively evaluated and optimal results are determined. By adopting the finite element method (FEM), the electromagnetic performances of the optimal DS-PMDS motor is investigated. Moreover, a multi-physical field analysis is included to describe stress, deformation of the rotor, and temperature distribution of the proposed motor. The theoretical analysis verified the rationality of the motor investigated and the effectiveness of the proposed optimization method

    Optimal Design and Performance Analysis of Double Stator Multi-Excitation Flux-Switching Machine

    No full text

    Immune dysregulation in depression: Evidence from genome-wide association

    No full text
    A strong body of evidence supports a role for immune dysregulation across many psychiatric disorders including depression, the leading cause of global disability. Recent progress in the search for genetic variants associated with depression provides the opportunity to strengthen our current understanding of etiological factors contributing to depression and generate novel hypotheses. Here, we provide an overview of the literature demonstrating a role for immune dysregulation in depression, followed by a detailed discussion of the immune-related genes identified by the most recent genome-wide meta-analysis of depression. These genes represent strong evidence-based targets for future basic and translational research which aims to understand the role of the immune system in depression pathology and identify novel points for therapeutic intervention

    Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    No full text
    Dense and crack-free barium titanate (BaTiO3, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film
    corecore