268 research outputs found

    Electro-Optical Manipulation Based on Dielectric Nanoparticles

    Get PDF
    The ability to dynamically modulate plasmon resonances or Mie resonances is crucial for practical application. Electrical tuning as one of the most efficiently active tuning methods has high switching speed and large modulation depth. Silicon as a typical high refractive index dielectric material can generate strong Mie resonances, which have shown comparable performances with plasmonic nanostructures in spectral tailoring and phase modulation. However, it is still unclear whether the optical response of single silicon nanoantenna can be electrically controlled effectively. In this chapter, we introduce two types of optoelectronic devices based on Mie resonances in silicon nanoantennas. First, we observe obvious blueshift and intensity attenuation of the plasmon-dielectric hybrid resonant peaks when applying bias voltages. Second, photoluminescence (PL) enhancement and modulation are achieved together in the WS2-Mie resonator hybrid system

    Cascade Residual Learning: A Two-stage Convolutional Neural Network for Stereo Matching

    Full text link
    Leveraging on the recent developments in convolutional neural networks (CNNs), matching dense correspondence from a stereo pair has been cast as a learning problem, with performance exceeding traditional approaches. However, it remains challenging to generate high-quality disparities for the inherently ill-posed regions. To tackle this problem, we propose a novel cascade CNN architecture composing of two stages. The first stage advances the recently proposed DispNet by equipping it with extra up-convolution modules, leading to disparity images with more details. The second stage explicitly rectifies the disparity initialized by the first stage; it couples with the first-stage and generates residual signals across multiple scales. The summation of the outputs from the two stages gives the final disparity. As opposed to directly learning the disparity at the second stage, we show that residual learning provides more effective refinement. Moreover, it also benefits the training of the overall cascade network. Experimentation shows that our cascade residual learning scheme provides state-of-the-art performance for matching stereo correspondence. By the time of the submission of this paper, our method ranks first in the KITTI 2015 stereo benchmark, surpassing the prior works by a noteworthy margin.Comment: Accepted at ICCVW 2017. The first two authors contributed equally to this pape

    Neural Video Compression with Diverse Contexts

    Full text link
    For any video codecs, the coding efficiency highly relies on whether the current signal to be encoded can find the relevant contexts from the previous reconstructed signals. Traditional codec has verified more contexts bring substantial coding gain, but in a time-consuming manner. However, for the emerging neural video codec (NVC), its contexts are still limited, leading to low compression ratio. To boost NVC, this paper proposes increasing the context diversity in both temporal and spatial dimensions. First, we guide the model to learn hierarchical quality patterns across frames, which enriches long-term and yet high-quality temporal contexts. Furthermore, to tap the potential of optical flow-based coding framework, we introduce a group-based offset diversity where the cross-group interaction is proposed for better context mining. In addition, this paper also adopts a quadtree-based partition to increase spatial context diversity when encoding the latent representation in parallel. Experiments show that our codec obtains 23.5% bitrate saving over previous SOTA NVC. Better yet, our codec has surpassed the under-developing next generation traditional codec/ECM in both RGB and YUV420 colorspaces, in terms of PSNR. The codes are at https://github.com/microsoft/DCVC.Comment: Accepted by CVPR 2023. Codes are at https://github.com/microsoft/DCV

    Inertia of partial transpose of positive semidefinite matrices

    Full text link
    We show that the partial transpose of 9×99\times 9 positive semidefinite matrices do not have inertia (4,1,4) and (3,2,4). It solves an open problem in "LINEAR AND MULTILINEAR ALGEBRA, Changchun Feng et al, 2022". We apply our results to construct some inertia, as well as present the list of all possible inertia of partial transpose of 12×1212\times 12 positive semidefinite matrices.Comment: 20 pages, comments are welcom

    Accurate Single Stage Detector Using Recurrent Rolling Convolution

    Full text link
    Most of the recent successful methods in accurate object detection and localization used some variants of R-CNN style two stage Convolutional Neural Networks (CNN) where plausible regions were proposed in the first stage then followed by a second stage for decision refinement. Despite the simplicity of training and the efficiency in deployment, the single stage detection methods have not been as competitive when evaluated in benchmarks consider mAP for high IoU thresholds. In this paper, we proposed a novel single stage end-to-end trainable object detection network to overcome this limitation. We achieved this by introducing Recurrent Rolling Convolution (RRC) architecture over multi-scale feature maps to construct object classifiers and bounding box regressors which are "deep in context". We evaluated our method in the challenging KITTI dataset which measures methods under IoU threshold of 0.7. We showed that with RRC, a single reduced VGG-16 based model already significantly outperformed all the previously published results. At the time this paper was written our models ranked the first in KITTI car detection (the hard level), the first in cyclist detection and the second in pedestrian detection. These results were not reached by the previous single stage methods. The code is publicly available.Comment: CVPR 201

    An Extrinsic Calibration Method of a 3D-LiDAR and a Pose Sensor for Autonomous Driving

    Full text link
    Accurate and reliable sensor calibration is critical for fusing LiDAR and inertial measurements in autonomous driving. This paper proposes a novel three-stage extrinsic calibration method of a 3D-LiDAR and a pose sensor for autonomous driving. The first stage can quickly calibrate the extrinsic parameters between the sensors through point cloud surface features so that the extrinsic can be narrowed from a large initial error to a small error range in little time. The second stage can further calibrate the extrinsic parameters based on LiDAR-mapping space occupancy while removing motion distortion. In the final stage, the z-axis errors caused by the plane motion of the autonomous vehicle are corrected, and an accurate extrinsic parameter is finally obtained. Specifically, This method utilizes the natural characteristics of road scenes, making it independent and easy to apply in large-scale conditions. Experimental results on real-world data sets demonstrate the reliability and accuracy of our method. The codes are open-sourced on the Github website. To the best of our knowledge, this is the first open-source code specifically designed for autonomous driving to calibrate LiDAR and pose-sensor extrinsic parameters. The code link is https://github.com/OpenCalib/LiDAR2INS.Comment: 7 pages, 12 figure
    • …
    corecore