156 research outputs found
The construction and characterization of the bi-directional promoter between pp38 gene and 1.8-kb mRNA transcripts of Marek's disease viruses
<p>Abstract</p> <p>Background</p> <p>Marek's disease virus (MDV) has a bi-directional promoter between pp38 gene and 1.8-kb mRNA transcripts. By sequencing for the promoters from 8 different strains (CVI988, 814, GA, JM, Md5, G2, RB1B and 648A), it is found, comparing with the other 7 MDV strains, CVI988 has a 5-bp (from -628 to -632) deletion in this region, which caused a Sp1 site destroyed. In order to analysis the activity of the promoter, the complete bi-directional promoters from GA and CVI988 were, respectively, cloned into pCAT-Basic vector in both directions for the recombinants pP<sub>GA</sub>(pp38)-CAT, pP<sub>GA</sub>(1.8 kb)-CAT, pP<sub>CVI</sub>(pp38)-CAT and pP<sub>CVI</sub>(1.8 kb)-CAT. The complete promoter of GA was divided into two single-direction promoters from the replication of MDV genomic DNA, and cloned into pCAT-Basic for pdP<sub>GA</sub>(pp38)-CAT and pdP<sub>GA</sub>(1.8 kb)-CAT as well. The above 6 recombinants were then transfected into chicken embryo fibroblasts (CEFs) infected with MDV, and the activity of chloramphenicol acetyltransferase (CAT) was measured from the lysed CEFs 48 h post transfection.</p> <p>Results</p> <p>The results showed the activity of the divided promoters was decreased on both directions. In 1.8-kb mRNA direction, it is nearly down to 2.4% (19/781) of the whole promoter, while it keeps 65% (34/52) activity in pp38 direction. The deletion of Sp1 site in CVI988 causes the 20% activity decreased, and has little influence in pp38 direction.</p> <p>Conclusion</p> <p>The present study confirmed their result, and the promoter for the 1.8-kb mRNA transcripts is a much stronger promoter than that in the orientation for pp38.</p
Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia
Climate projections are essential for decision-making but contain non-negligible uncertainty. To reduce projection uncertainty over Asia, where half the world's population resides, we develop emergent constraint relationships between simulated temperature (1970-2014) and precipitation (2015-2100) growth rates using 27 CMIP6 models under four Shared Socioeconomic Pathways. Here we show that, with uncertainty successfully narrowed by 12.1-31.0%, constrained future precipitation growth rates are 0.39 ± 0.18 mm year-1 (29.36 mm °C-1, SSP126), 0.70 ± 0.22 mm year-1 (20.03 mm °C-1, SSP245), 1.10 ± 0.33 mm year-1 (17.96 mm °C-1, SSP370) and 1.42 ± 0.35 mm year-1 (17.28 mm °C-1, SSP585), indicating overestimates of 6.0-14.0% by the raw CMIP6 models. Accordingly, future temperature and total evaporation growth rates are also overestimated by 3.4-11.6% and -2.1-13.0%, respectively. The slower warming implies a lower snow cover loss rate by 10.5-40.2%. Overall, we find the projected increase in future water availability is overestimated by CMIP6 over Asia
Deletion of 1.8-kb mRNA of Marek's disease virus decreases its replication ability but not oncogenicity
<p>Abstract</p> <p>Background</p> <p>The 1.8-kb mRNA was reported as one of the oncogenesis-related genes of Marek's disease virus (MDV). In this study, the bacterial artificial chromosome (BAC) clone of a MDV field strain GX0101 was used as the platform to generate mutant MDV to examine the functional roles of 1.8-kb mRNA.</p> <p>Results</p> <p>Based on the BAC clone of GX0101, the 1.8-kb mRNA deletion mutant GX0101Δ(A+C) was constructed. The present experiments indicated that GX0101Δ(A+C) retained a low level of oncogenicity, and it showed a decreased replication capacity in vitro and in vivo when compared with its parent virus, GX0101. Further studies in vitro demonstrated that deletion of 1.8-kb mRNA significantly decreased the transcriptional activity of the bi-directional promoter between 1.8-kb mRNA and pp38 genes of MDV.</p> <p>Conclusion</p> <p>These results suggested that the 1.8-kb mRNA did not directly influence the oncogenesis but related to the replication ability of MDV.</p
A lag bloom pattern of phytoplankton after freshwater input events revealed by daily samples during summer in Qinhuangdao coastal water, China
Phytoplankton blooms have become a global concern due to their negative impacts on public health, aquaculture, tourism, and the economic stability of coastal regions. Therefore, elucidating the shifts in phytoplankton community structure and abundance, as well as their environmental drivers, is crucial. However, existing studies often fail to capture the detailed dynamics of phytoplankton blooms and their environmental triggers due to low temporal observation resolution. In this study, high temporal resolution (daily) samples were collected over 43 days to investigate the influence of environmental factors on phytoplankton in Qinhuangdao in the summer. During the observation period, a total of 45 phytoplankton species were identified, comprising 26 Bacillariophyta species, 16 Dinophyta species, 2 Euglenophyta species, and 1 Chromophyta species. Interestingly, a lag bloom pattern of phytoplankton behind freshwater input was observed across day-to-day samples. Phytoplankton blooms typically lagged 1–3 days behind periods of decreased salinity and nutrient input, suggesting that freshwater influx provides the foundational materials and benefits for these blooms. Moreover, the phytoplankton blooms were triggered by six dominant species, i.e., Chaetoceros spp., Pseudo-nitzschia delicatissima, Skeletonema costatum, Protoperdinium spp., Leptocylindrus minimus, Pseudo-nitzschia pungens, and Thalassiosira spp. Consequently, the succession of phytoplankton showed a predominant genera shift in the following sequence: Nitzschia, Protoperdinium, and Prorocentrum – Skeletonema – Pseudo-nitzschia – Gymnodinium – Leptocylindrus. Besides that, a deterministic process dominated phytoplankton community assembly across time series, and DIP is a key factor in shifting the phytoplankton community structures in this area. In summary, our study offers high-resolution observations on the succession of phytoplankton communities and sheds light on the complex and differentiated responses of phytoplankton to environmental factors. These findings enhance our understanding of the dynamics of phytoplankton blooms and their environmental drivers, which is essential for the effective management and mitigation of their adverse impacts
Topological Properties of Brain Structural Networks Represent Early Predictive Characteristics for the Occurrence of Bipolar Disorder in Patients With Major Depressive Disorder: A 7-Year Prospective Longitudinal Study
Bipolar disorder (BD) and major depressive disorder (MDD) are associated with different brain functional and structural abnormalities, but BD is hard to distinguish from MDD until the first manic or hypomanic episode. The aim of this study was to examine whether the topological properties of the brain structural network could be used to differentiate BD from MDD patients before their first manic/hypomanic episode. Diffusion tensor images were collected from 80 MDD patients and 53 healthy controls (HCs); 78 patients completed the follow-up study lasting 7 years. Among them, 12 patients were converted to BD and 64 patients remained MDD. Topological properties of the brain structural networks at baseline were compared among patients who converted to BD, patients who did not develop BD, and HCs. Patients who converted to BD displayed reduced nodal local efficiency in the left inferior frontal gyrus(IFG) compared with HCs and patients who did not convert to BD. There was no significant difference in the nodal global efficiency among the three groups. The findings suggest that the nodal local efficiency in the left IFG could serve as a potential biomarker to predict the conversion of MDD to BD before the occurrence of the first manic or hypomanic episode
Paleoclimate evolution of the North Pacific Ocean during the late Quaternary: Progress and challenges
High- and low-latitude climatic processes in the North Pacific Ocean are important components of the global climate system. For example, the interplay among North Pacific atmospheric circulation, ocean circulation, and biological productivity affects atmospheric carbon dioxide levels and marine oxygen concentrations. Here we review recent research on the North Pacific paleoclimatic and paleoceanographic evolution during the late Quaternary and its response to external forcings such as orbital insolation, ice-sheet extent, and greenhouse gas concentrations. First, we summarize the principles and application of relative paleointensity as a critical chronological tool in North Pacific paleoclimate research. Second, we illustrate the latest discoveries on the interaction between North Pacific Intermediate Water formation and high-to-low latitude teleconnection processes. Third, recent progress in linking dust fluxes and marine productivity and their global significance for the carbon cycle are presented. Finally, several key scientific problems are highlighted for future research on ocean-atmosphere-climate interactions in the North Pacific, pointing to the importance of combining paleo-records and modeling simulations. Overall, this review also aims to provide a broad insight into possible future changes of ocean-atmosphere circulation in the North Pacific region under a rapidly warming climate
Phylogeography and demographic history of the cyprinid fish Barbodes semifasciolatus: implications for the history of landform changes in south mainland China, Hainan and Taiwan
Hainan Island and Taiwan Island are adjacent to the southern margin of mainland China and Vietnam. During glacial periods, global sea levels dropped, allowing that the land bridges connected the continental island and mainland, connecting rivers and providing dispersal opportunities that shaped the origin and diversification of freshwater fishes. Barbodes semifasciolatus is distributed in various water systems of Vietnam, Hainan, Taiwan, and southern mainland China and is restricted to the southern region of the Min River. Our study aimed to evaluate the genetic diversity and phylogeography of B. semifasciolatus using the mtDNA cyt b gene (1,141 bp). A total of 107 haplotypes were identified from 395 specimens in 23 populations, and high haplotype diversity (1.000) and low nucleotide diversity (0.0134) were detected. Mitochondrial phylogenetic analysis and haplotype network analyses revealed three major lineages according to geographical distribution. Lineage A was mainly distributed in Hainan Island, Vietnam and the southern region of the Pearl River in mainland China. Lineage B was distributed only in southeastern Hainan Island. Lineage C was distributed in the coastal rivers of mainland China and Taiwan. We suggest that the river in the Guangdong region is a colonization route in South Taiwan and that the populations distributed in the Pearl River region moved southward to Hainan Island and Vietnam based on the network and Bayesian binary MCMC (BBM) analysis. Our demographic history results indicated that the populations of B. semifasciolatus experienced a bottleneck event following a recent population expansion (DECINC model) supported by ABC analysis. We suggest that sea-level changes exerted pronounced effects on the demography of B. semifasciolatus on the continental island and in the mainland during the late Pleistocene glacial cycles
mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality
Large language models (LLMs) have demonstrated impressive zero-shot abilities
on a variety of open-ended tasks, while recent research has also explored the
use of LLMs for multi-modal generation. In this study, we introduce mPLUG-Owl,
a novel training paradigm that equips LLMs with multi-modal abilities through
modularized learning of foundation LLM, a visual knowledge module, and a visual
abstractor module. This approach can support multiple modalities and facilitate
diverse unimodal and multimodal abilities through modality collaboration. The
training paradigm of mPLUG-Owl involves a two-stage method for aligning image
and text, which learns visual knowledge with the assistance of LLM while
maintaining and even improving the generation abilities of LLM. In the first
stage, the visual knowledge module and abstractor module are trained with a
frozen LLM module to align the image and text. In the second stage,
language-only and multi-modal supervised datasets are used to jointly fine-tune
a low-rank adaption (LoRA) module on LLM and the abstractor module by freezing
the visual knowledge module. We carefully build a visually-related instruction
evaluation set OwlEval. Experimental results show that our model outperforms
existing multi-modal models, demonstrating mPLUG-Owl's impressive instruction
and visual understanding ability, multi-turn conversation ability, and
knowledge reasoning ability. Besides, we observe some unexpected and exciting
abilities such as multi-image correlation and scene text understanding, which
makes it possible to leverage it for harder real scenarios, such as vision-only
document comprehension. Our code, pre-trained model, instruction-tuned models,
and evaluation set are available at https://github.com/X-PLUG/mPLUG-Owl. The
online demo is available at https://www.modelscope.cn/studios/damo/mPLUG-Owl.Comment: Working in Proces
- …