19 research outputs found

    Flavonoids from Lycium barbarum leaves attenuate obesity through modulating glycolipid levels, oxidative stress, and gut bacterial composition in high-fat diet-fed mice

    Get PDF
    Traditional herbal therapy made from Lycium barbarum leaves has been said to be effective in treating metabolic diseases, while its exact processes are yet unknown. Natural flavonoids are considered as a secure and reliable method for treating obesity. We thus made an effort to investigate the processes by which flavonoids from L. barbarum leaves (LBLF) reduce obesity. To assess the effectiveness of the intervention following intragastric injection of various dosages of LBLF (50, 100, and 200 mg/kg⋅bw), obese model mice developed via a high-fat diet were utilized. Treatment for LBLF may decrease body weight gain, Lee’s index, serum lipids levels, oxidative stress levels, and hepatic lipids levels. It may also enhance fecal lipids excretion and improve glucose tolerance. Additionally, LBLF therapy significantly restored gut dysfunction brought on by a high-fat diet by boosting gut bacterial diversities and altering the composition of the gut bacterial community by elevating probiotics and reducing harmful bacteria

    Revival Mechanism and Prevention Measures of Composite Landslides: A Case Study of the Wenma Expressway Composite Landslide

    No full text
    The resurrection of landslides often occurs in complex strata, where there are often multiple water-resisting zones and weak interlayers. The groundwater level has a significant influence on landslide stability and can lead to the formation of composite landslides and increase the probability of landslide resurrection. In a field investigation of the K39 +400 composite landslide of Wenma Expressway, the deformation characteristics of the landslide surface were obtained by analyzing 34 cracks on the landslide surface. The deep deformation characteristics of the landslide were analyzed by studying the deformation data obtained from deep borehole monitoring. The deformation zone characteristics of landslides were assessed by integrating surface and deep deformation data in the landslide area. The resurrections of shallow landslides in Area I and deep landslides in Area III were due mainly to the long-term high underground water level in the landslide. The stability of the landslide was calculated under various depths of drainage tunnel, and the results showed that the slope was in critical condition when the depth of the drainage tunnel was 15 m; the slope was basically stable when the depth of the drainage tunnel was 20 m and 25 m. When the depth of the drainage tunnel reached more than 30 m, the slope was in a stable state. Groundwater level was found to be the main factor affecting landslide deformation. This case study shows the importance of zoning the deformation characteristics of composite landslides, and the important influence of the groundwater level on landslide resurrection

    Microorganism-Templated Nanoarchitectonics of Hollow TiO2-SiO2 Microspheres with Enhanced Photocatalytic Activity for Degradation of Methyl Orange

    No full text
    In this study, hollow SiO2 microspheres were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS) according to the Stober process, in which Pichia pastoris GS 115 cells were served as biological templates. The influence of the preprocessing method, the TEOS concentration, the ratio of water to ethanol, and the aging time on the morphology of microspheres was investigated and the optimal conditions were identified. Based on this, TiO2-SiO2 microspheres were prepared by the hydrothermal process. The structures and physicochemical properties of TiO2-SiO2 photocatalysts were systematically characterized and discussed. The photocatalytic activity for the degradation of methyl orange (MO) at room temperature under Xe arc lamp acting as simulated sunlight was explored. The result showed that the as-prepared TiO2-SiO2 microspheres exhibited a good photocatalytic performance

    Flavonoids from Lycium barbarum Leaves Exhibit Anti-Aging Effects through the Redox-Modulation

    No full text
    Lycium barbarum leaves are a kind of vegetable, and modern nutrition studies have found that they have an anti-aging function. Our study aims to investigate the anti-aging effects of Lycium barbarum leaf flavonoid (LBLF) extracts and its underlying molecular mechanism. LBLFs were purified using D101 and polyamide resin, characterized by ultraperformance liquid chromatography coupled with mass spectrometry, and administered to hydrogen peroxide (H2O2)-treated human umbilical vein endothelial cells (HUVECs) and Caenorhabditis elegans. Appropriate enrichment conditions were optimized through dynamic adsorption and desorption experiments, the content of flavonoids reached 909.84 mg/g, rutin and kaempferol being the main ones. LBLFs attenuated H2O2-induced HUVEC apoptosis, decreased reactive oxygen species and malondialdehyde production levels, increased superoxide dismutase, glutathione peroxidase and catalase activities. Furthermore, pre-treatment with LBLF increased mRNA expression of erythropoietin (EPO) and heme oxygenase-1 (HO-1) via the mitogen-activated protein kinase (MAPK) signaling pathway in HUVECs. Compared with 100 µM rutin monomer, LBLF prolonged the lifespan of Caenorhabditis elegans, enhanced their mobility in middle life stages and upregulated expression of sod-2, gcs-1 and skn-1 genes, which indicated that the anti-aging effects of LBLF were due to its redox-modulation

    High-Efficiency Differential Single-Pixel Imaging Based on Discrete Cosine Transform

    No full text
    Existing discrete cosine transform single-pixel imaging (DCT-SPI) improves the imaging quality, but its number of measurements is twice as the number of pixels of the illumination pattern under full sampling. To reduce the number of measurements, in this letter we propose a single-pixel imaging method called positive discrete cosine transform single-pixel imaging (PDCT-SPI). In the proposed method, only the positive patterns are employed to reconstruct the image. Thus, the number of measurements is reduced by 1/2. Based on the characteristics of Fourier series, the background noise is eliminated by subtracting the average of the detected values to guarantee the imaging quality of PDCT-SPI. Experimental results show that under the same sampling rates, the image quality reconstructed by PDCT-SPI is similar as DCT-SPI, the number of measurements of PDCT-SPI is only half of DCT-SPI

    Novel Cellulose Nanocrystals-Based Polyurethane: Synthesis, Characterization and Antibacterial Activity

    No full text
    As a new type of polymer, water-driven polyurethane (PU) has attracted increasing attention of researchers; however, with the popularization of its application, the following infection problems limit their applications, especially in the biomedical field. Herein, a series of novel cellulose nanocrystals (CNCs)-based PUs were first synthesized by chemical cross-linking CNCs with triblock copolymer polylactide–poly (ethylene glycol)–polylactide (CNC-PU). After covalent binding with tannic acid (TA-CNC-PU), the silver nanoparticles (Ag NPs) were further introduced into the material by a reduction reaction (Ag/TA-CNC-PU). Finally, the prepared serial CNCs-based PU nanocomposites were fully characterized, including the microstructure, water contact angle, water uptake, thermal properties as well as antibacterial activity. Compared with CNC-PU, the obtained TA-CNC-PU and Ag/TA-CNC-PU were capable of lower glass transition temperatures and improved thermal stability. In addition, we found that the introduction of tannic acid and Ag NPs clearly increased the material hydrophobicity and antibacterial activity. In particular, the Ag/TA-CNC-PU had a better antibacterial effect on E. coli, while TA-CNC-PU had better inhibitory effect on S. aureus over a 24 h time period. Therefore, these novel CNCs-based PUs may be more beneficial for thermal processing and could potentially be developed into a new class of smart biomaterial material with good antibacterial properties by adjusting the ratio of TA or Ag NPs in their structures

    An amorphous Zn-P/graphite composite with chemical bonding for ultra-reversible lithium storage

    No full text
    Finding low-cost and large-capacity anode materials to replace the commercially available graphite is an urgent need to meet the ever-increasing demand for high energy density Li-ion batteries (LIBs). Due to their suitable working potential, high theoretical capacity and low polarization, phosphides have attracted increasing interest as promising anode candidates for LIBs. However, phosphides suffer from large volume variation and low ionic and electronic conductivity, limiting the long-term cycling stability and rate capability. Herein, we report ZnP2/C derived from alfa-ZnP2 (tetragonal) and graphite as a highly reversible anode for LIBs. Alfa-ZnP2 (tetragonal) has been found to more easily form an amorphous composite with graphite with P-C bonds compared to Zn3P2. The amorphous structure could dramatically reduce the risk of fracture during cycling, profiting from an isotropic stress and the P-C bonds could enhance the Li-ion and electron transfer capability. Therefore, the ZnP2/C composite demonstrates significantly attractive performance in terms of reaction kinetics, energy efficiency and cycling stability with a specific capacity of 1270 mA h g-1 after 2730 cycles, making it superior to other Zn-P compounds and even other transition metal phosphide anodes. The highly reversible lithium storage capability of the ZnP2/C composite can be mainly attributed to the pseudocapacitive contribution. Additionally, the Li-ion full cell LiCoO2//ZnP2/C delivers 1200 mA h g-1 even after 200 cycles with an average working potential of 3.5 V, demonstrating its potential for application in next-generation Li-ion batteries. Broadly, this work would open an avenue for selecting appropriate phases and designing structural engineering with new chemical bonds to achieve ultralong cycling stability and ultrahigh rate performance

    A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy

    No full text
    Ge is considered a promising anode candidate for Li-ion batteries (LIBs); however, its practical applicability is hindered by the relatively slow Li-ion diffusion owing to the stiffness of the diamond-like structure. Inspired by little difference in electronegativity between Ge and P, we have designed a novel layered GeP anode for LIBs, which can be readily synthesized using a mechano-chemical method and a subsequent low-temperature annealing. In particular, GeP demonstrates the best performances among all Ge-based anode materials studied, attributed to its fast Li-ion diffusion compared to Ge counterpart and a unique Li-storage mechanism that involves intercalation, conversion, and alloying, as confirmed by XRD, TEM, XPS, and Raman spectroscopy. Specially, the initial layered crystal structure of GeP can be reconstructed during charging due to its low formation energy, thus offering remarkable reversibility during cycling. Further, this study implies that the formation energy of crystal structures could be an important parameter for strategic design of large-capacity anode materials for LIBs
    corecore