14,021 research outputs found

    Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

    Full text link
    Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image super-resolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.Comment: This work is accepted in CVPR 2017. The code and datasets are available on http://vllab.ucmerced.edu/wlai24/LapSRN

    Forecasting Human Dynamics from Static Images

    Full text link
    This paper presents the first study on forecasting human dynamics from static images. The problem is to input a single RGB image and generate a sequence of upcoming human body poses in 3D. To address the problem, we propose the 3D Pose Forecasting Network (3D-PFNet). Our 3D-PFNet integrates recent advances on single-image human pose estimation and sequence prediction, and converts the 2D predictions into 3D space. We train our 3D-PFNet using a three-step training strategy to leverage a diverse source of training data, including image and video based human pose datasets and 3D motion capture (MoCap) data. We demonstrate competitive performance of our 3D-PFNet on 2D pose forecasting and 3D pose recovery through quantitative and qualitative results.Comment: Accepted in CVPR 201
    • …
    corecore