5,805 research outputs found

    Prospects for Detecting Neutrino Signals from Annihilating/Decaying Dark Matter to Account for the PAMELA and ATIC results

    Full text link
    Recent PAMELA data show that positron fraction has an excess above several GeV while anti-proton one is not. Moreover ATIC data indicates that electron/positron flux have a bump from 300 GeV to 800 GeV. Both annihilating dark matter (DM) with large boost factor and decaying DM with the life around 1026s 10^{26} s can account for the PAMELA and ATIC observations if their main final products are charged leptons (ee, μ\mu and τ\tau). In this work, we calculated the neutrino flux arising from μ\mu and τ\tau which originate from annihilating/decaying DM, and estimated the final muon rate in the neutrino telescopes, namely Antares and IceCube. Given the excellent angular resolution, Antares and IceCube are promising to discover the neutrino signals from Galactic center and/or large DM subhalo in annihilating DM scenario, but very challenging in decaying DM scenario.Comment: 21 pages, 7 figures, 2 tables. V2: references added. V3: the number density of massive subhalo has been discussed in the appendix; accepted by PR

    2-{2,6-Bis[bis(4-fluorophenyl)methyl]-4-chlorophenylimino} -3-aryliminobutylnickel(II) bromide complexes: Synthesis, characterization, and investigation of their catalytic behavior

    Get PDF
    The series of 2-{2,6-bis[di(4-fluorophenyl)methyl]-4-chlorophenylimino}-3- aryliminobutane derivatives (L1-L5) and their nickel(II) dibromide complexes (Ni1-Ni5) were synthesized, and all organic compounds were fully characterized by the Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy and by elemental analysis, while the nickel complexes were characterized by FT-IR spectroscopy, elemental analysis, as well as by single-crystal X-ray diffraction for two representative examples, namely Ni1 and Ni4. A distorted tetrahedral geometry was observed for these four-coordinate nickel complexes. Upon the activation with either Methylaluminoxane or modified methylaluminoxane as co-catalyst, all nickel complex precatalysts showed very high activity toward ethylene polymerization with activities of up to 10 7 g(PE)·mol -1 (Ni)·h -1 , and afforded highly branched polyethylene with a bimodal distribution. © 2014 Elsevier B.V

    Exploiting Contextual Information for Prosodic Event Detection Using Auto-Context

    Get PDF
    Prosody and prosodic boundaries carry significant information regarding linguistics and paralinguistics and are important aspects of speech. In the field of prosodic event detection, many local acoustic features have been investigated; however, contextual information has not yet been thoroughly exploited. The most difficult aspect of this lies in learning the long-distance contextual dependencies effectively and efficiently. To address this problem, we introduce the use of an algorithm called auto-context. In this algorithm, a classifier is first trained based on a set of local acoustic features, after which the generated probabilities are used along with the local features as contextual information to train new classifiers. By iteratively using updated probabilities as the contextual information, the algorithm can accurately model contextual dependencies and improve classification ability. The advantages of this method include its flexible structure and the ability of capturing contextual relationships. When using the auto-context algorithm based on support vector machine, we can improve the detection accuracy by about 3% and F-score by more than 7% on both two-way and four-way pitch accent detections in combination with the acoustic context. For boundary detection, the accuracy improvement is about 1% and the F-score improvement reaches 12%. The new algorithm outperforms conditional random fields, especially on boundary detection in terms of F-score. It also outperforms an n-gram language model on the task of pitch accent detection

    Discriminating different scenarios to account for the cosmic e±e^\pm excess by synchrotron and inverse Compton radiation

    Full text link
    The excesses of the cosmic positron fraction recently measured by PAMELA and the electron spectra by ATIC, PPB-BETS, Fermi and H.E.S.S. indicate the existence of primary electron and positron sources. The possible explanations include dark matter annihilation, decay, and astrophysical origin, like pulsars. In this work we show that these three scenarios can all explain the experimental results of the cosmic e±e^\pm excess. However, it may be difficult to discriminate these different scenarios by the local measurements of electrons and positrons. We propose possible discriminations among these scenarios through the synchrotron and inverse Compton radiation of the primary electrons/positrons from the region close to the Galactic center. Taking typical configurations, we find the three scenarios predict quite different spectra and skymaps of the synchrotron and inverse Compton radiation, though there are relatively large uncertainties. The most prominent differences come from the energy band 104∼10910^4\sim 10^9 MHz for synchrotron emission and ≳10\gtrsim 10 GeV for inverse Compton emission. It might be able to discriminate at least the annihilating dark matter scenario from the other two given the high precision synchrotron and diffuse γ\gamma-ray skymaps in the future.Comment: published in Pr

    Tetra­kis[μ-2-(3,4-dimeth­oxy­phen­yl)acetato]-κ3 O 1,O 1′:O 1;κ3 O 1:O 1,O 1′;κ4 O 1:O 1′-bis­{[2-(3,4-dimeth­oxy­phen­yl)acetato-κ2 O 1,O 1′](1,10-phenanthroline-κ2 N,N′)erbium(III)}

    Get PDF
    In the dimeric centrosymmetric title complex, [Er2(C10H11O4)6(C12H8N2)2], the ErIII ion is nine-coordinated by five 2-(3,4-dimeth­oxy­lphen­yl)acetic acid (DMPA) ligands via seven O atoms and two N atoms from a bis-chelating 1,10-phenanthroline (phen) ligand in a distorted tricapped trigonal-prismatic geometry. The DMPA ligands are coordinated to the ErIII ion in bis-chelate, bridging and bridging tridentate modes. Relatively weak intra­molecular C—H⋯O inter­actions reinforce the stability of the mol­ecular structure. Inter­molecular C—H⋯O inter­actions are also observed
    • …
    corecore