27,973 research outputs found

    Electronic states and magnetic structure at the Co3O4 (110) surface: a first principles study

    Full text link
    Tricobalt tetraoxide (Co3O4) is an important catalyst and Co3O4(110) is a frequently exposed surface in Co3O4 nanomaterials. We employed Density-functional theory with on-site Coulomb repulsion U term to study the atomic structures, energetics, magnetic and electronic properties of the two possible terminations, A and B, of this surface. These calculations predict A as the stable termination in a wide range of oxygen chemical potentials, consistent with recent experimental observations. The Co3+ ions do not have a magnetic moment in the bulk, but become magnetic at the surface, which leads to surface magnetic orderings different from the one in the bulk. Surface electronic states are present in the lower half of the bulk band gap and cause partial metallization of both surface terminations. These states are responsible for the charge compensation mechanism stabilizing both polar terminations. The computed critical thickness for polarity compensation is 4 layers

    Asymptotic Properties of the Partition Function and Applications in Tail Index Inference of Heavy-Tailed Data

    Full text link
    The so-called partition function is a sample moment statistic based on blocks of data and it is often used in the context of multifractal processes. It will be shown that its behaviour is strongly influenced by the tail of the distribution underlying the data either in i.i.d. and weakly dependent cases. These results will be exploited to develop graphical and estimation methods for the tail index of a distribution. The performance of the tools proposed is analyzed and compared with other methods by means of simulations and examples.Comment: 31 pages, 5 figure

    Microcausality of spin-induced noncommutative theories

    Full text link
    In this brief report, the microcausility of quantum field theory on spin-induced noncom- mutative spacetime is discussed. It is found that for spacelike seperation the microcausality is not obeyed by the theory generally. It means that Lorentz covariance can not guaran- tee microcausality in quantum field thoery. We also give some comments about quantum field thoeries on such noncommutative spacetime and the relations between noncommutative spacetime and causality.Comment: 9 pages, no figur

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Magnetotransport and spin dynamics in an electron gas formed at oxide interfaces

    Full text link
    We investigate the spin-dependent transport properties of a two-dimensional electron gas formed at oxides' interface in the presence of a magnetic field. We consider several scenarios for the oxides' properties, including oxides with co-linear or spiral magnetic and ferroelectric order. For spiral multiferroic oxides, the magnetoelectric coupling and the topology of the localized magnetic moments introduce additional, electric field controlled spin-orbit coupling that affects the magneto-oscillation of the current. An interplay of this spin-orbit coupling, the exchange field, and of the applied magnetic field results in a quantum, gate-controlled spin and charge Hall conductance

    Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere

    Get PDF
    The interaction between the solar wind and a magnetosphere is fundamental to the dynamics of a planetary system. Here, we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel ~20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-beta magnetosheath, and in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.Comment: Accepted for publication in Journal of Geophysical Journal: Space Physic
    • …
    corecore