327 research outputs found

    Electrically-controllable RKKY interaction in semiconductor quantum wires

    Full text link
    We demonstrate in theory that it is possible to all-electrically manipulate the RKKY interaction in a quasi-one-dimensional electron gas embedded in a semiconductor heterostructure, in the presence of Rashba and Dresselhaus spin-orbit interaction. In an undoped semiconductor quantum wire where intermediate excitations are gapped, the interaction becomes the short-ranged Bloembergen-Rowland super-exchange interaction. Owing to the interplay of different types of spin-orbit interaction, the interaction can be controlled to realize various spin models, e.g., isotropic and anisotropic Heisenberg-like models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning the external electric field and designing the crystallographic directions. Such controllable interaction forms a basis for quantum computing with localized spins and quantum matters in spin lattices.Comment: 5 pages, 1 figur

    Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array

    Get PDF
    In this paper, a general low-cost and substrate-independent chemical etching strategy is demonstrated for the synthesis of ZnO nanotubes array. During the chemical etching, the nanotubes array inherits many features from the preformed nanorods array, such as the diameter, size distribution, and alignment. The preferential etching along c axis and the surfactant protection to the lateral surfaces are considered responsible for the formation of ZnO nanotubes. This surfactant-assisted chemical etching strategy is highly expected to advance the research in the ZnO nanotube-based technology

    Molecular cloning and transcriptional activity of a new Petunia calreticulin gene involved in pistil transmitting tract maturation, progamic phase, and double fertilization

    Get PDF
    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca2+-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca2+ storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma–style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis

    Lattice Blind Signatures with Forward Security

    Get PDF
    Blind signatures play an important role in both electronic cash and electronic voting systems. Blind signatures should be secure against various attacks (such as signature forgeries). The work puts a special attention to secret key exposure attacks, which totally break digital signatures. Signatures that resist secret key exposure attacks are called forward secure in the sense that disclosure of a current secret key does not compromise past secret keys. This means that forward-secure signatures must include a mechanism for secret-key evolution over time periods. This paper gives a construction of the first blind signature that is forward secure. The construction is based on the SIS assumption in the lattice setting. The core techniques applied are the binary tree data structure for the time periods and the trapdoor delegation for the key-evolution mechanism.Comment: ACISP 202

    Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity

    Get PDF
    BACKGROUND: Neuropilin-1 (NRP1) is a non-tyrosine kinase receptor for vascular endothelial growth factor (VEGF) recently implicated in tumour functions.METHODS: In this study we used a specific antagonist of VEGF binding to the NRP1 b1 domain, EG3287, to investigate the functional roles of NRP1 in human carcinoma cell lines, non-small-cell lung A549, kidney ACHN, and prostate DU145 cells expressing NRP1, and the underlying mechanisms involved.RESULTS: EG3287 potently displaced the specific binding of VEGF to NRP1 in carcinoma cell lines and significantly inhibited the migration of A549 and ACHN cells. Neuropilin-1 downregulation by siRNA also decreased cell migration. EG3287 reduced the adhesion of A549 and ACHN cells to extracellular matrix (ECM), and enhanced the anti-adhesive effects of a beta 1-integrin function-blocking antibody. EG3287 increased the cytotoxic effects of the chemotherapeutic agents 5-FU, paclitaxel, or cisplatin on A549 and DU145 cells, through inhibition of integrin-dependent cell interaction with the ECM.CONCLUSIONS: These findings indicate that NRP1 is important for tumour cell migration and adhesion, and that NRP1 antagonism enhances chemosensitivity, at least in part, by interfering with integrin-dependent survival pathways. A major implication of this study is that therapeutic strategies targeting NRP1 in tumour cells may be particularly useful in combination with other drugs for combating tumour survival, growth, and metastatic spread independently of an antiangiogenic effect of blocking NRP1. British Journal of Cancer (2010) 102, 541-552. doi:10.1038/sj.bjc.6605539 www.bjcancer.com Published online 19 January 2010 (C) 2010 Cancer Research U

    Impact of an Innovative Financing and Payment Model on Tuberculosis Patients’ Financial Burden: is Tuberculosis Care More Affordable for the Poor?

    Get PDF
    Background: In response to the high financial burden of health services facing tuberculosis (TB) patients in China, the China-Gates TB project, Phase II, has implemented a new financing and payment model as an important component of the overall project in three cities in eastern, central and western China. The model focuses on increasing the reimbursement rate for TB patients and reforming provider payment methods by replacing fee-for-service with a case-based payment approach. This study investigated changes in out-of-pocket (OOP) health expenditure and the financial burden on TB patients before and after the interventions, with a focus on potential differential impacts on patients from different income groups

    Reemerging superconductivity at 48 K across quantum criticality in iron chalcogenides

    Full text link
    Pressure plays an essential role in the induction1 and control2,3 of superconductivity in iron-based superconductors. Substitution of a smaller rare-earth ion for the bigger one to simulate the pressure effects has surprisingly raised the superconducting transition temperature Tc to the record high 55 K in these materials4,5. However, Tc always goes down after passing through a maximum at some pressure and the superconductivity eventually tends to disappear at sufficiently high pressures1-3. Here we show that the superconductivity can reemerge with a much higher Tc after its destruction upon compression from the ambient-condition value of around 31 K in newly discovered iron chalcogenide superconductors. We find that in the second superconducting phase the maximum Tc is as high as 48.7 K for K0.8Fe1.70Se2 and 48 K for (Tl0.6Rb0.4)Fe1.67Se2, setting the new Tc record in chalcogenide superconductors. The presence of the second superconducting phase is proposed to be related to pressure-induced quantum criticality. Our findings point to the potential route to the further achievement of high-Tc superconductivity in iron-based and other superconductors.Comment: 20 pages and 7 figure

    Tools to Support Policy Decisions Related to Treatment Strategies and Surveillance of Schistosomiasis Japonica towards Elimination

    Get PDF
    Immunodiagnostic assays are widely applied in the field to control schistosomiasis in P.R. China as the prevalence and infection intensity of schistosome infections decrease. Field evaluations are urgently needed before they can be adopted to support policy decisions of the national programme for the control and elimination of schistosomiasis in P.R. China. We carried out a large scale cross-sectional survey in field settings with different transmission situations to validate immunodiagnostic tools that can be used to formulate new schistosomiasis elimination strategy in P.R. China. Regarding stool examination as gold reference, the validity and screening efficacy of each immunodiagnostic kit were calculated and compared with each other. The association of the prevalence of schistosomiasis and antibody positive rates determined by immunoassays were analyzed using Pearson's correlation coefficient values. The study indicates that which test to use with the elimination strategy is dependent on the purpose of testing, the endemic status of community and the resources available. And more sensitive methods need to be explored and used to target infected individuals for treatment or to eliminate schistosomiasis
    corecore