22 research outputs found
A novel liposomal S-propargyl-cysteine: a sustained release of hydrogen sulfide reducing myocardial fibrosis via TGF-β1/Smad pathway
Purpose: S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H2S concentrations with known cardioprotective and anti-inflammatory effects. However, its rapid metabolism and excretion have limited its clinical application. To overcome these issues, we have developed some novel liposomal carriers to deliver ZYZ-802 to cells and tissues and have characterized their physicochemical, morphological and pharmacological properties. Methods :Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H2S concentrations. Using an in vivo model of heart failure (HF), the cardio-protective effects of liposomal carrier were determined by echocardiography, histopathology, western blot and the assessment of antioxidant and myocardial fibrosis markers.Results: Both liposomal formulations improved ZYZ-802 pharmacokinetics and optimized H2S concentrations in plasma and tissues. Liposomal ZYZ-802 showed enhanced cardioprotective effects in vivo. Importantly, liposomal ZYZ-802 could inhibit myocardial fibrosis via the inhibition of the TGF-β1/Smad signaling pathway. Conclusion: The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H2S within tissues.Key word: Liposome; S-Propargyl-cysteine (SPRC, ZYZ-802); Hydrogen sulfide; Heart failure; Myocardial fibrosis; TGF-β1/Smad pathwa
Intersecting distributed networks support convergent linguistic functioning across different languages in bilinguals
How bilingual brains accomplish the processing of more than one language has been widely investigated by neuroimaging studies. The assimilation-accommodation hypothesis holds that both the same brain neural networks supporting the native language and additional new neural networks are utilized to implement second language processing. However, whether and how this hypothesis applies at the finer-grained levels of both brain anatomical organization and linguistic functions remains unknown. To address this issue, we scanned Chinese-English bilinguals during an implicit reading task involving Chinese words, English words and Chinese pinyin. We observed broad brain cortical regions wherein interdigitated distributed neural populations supported the same cognitive components of different languages. Although spatially separate, regions including the opercular and triangular parts of the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas were found to perform the same linguistic functions across languages, indicating regional-level functional assimilation supported by voxel-wise anatomical accommodation. Taken together, the findings not only verify the functional independence of neural representations of different languages, but show co-representation organization of both languages in most language regions, revealing linguistic-feature specific accommodation and assimilation between first and second languages
Marine medaka heat shock protein 90ab1 is a receptor for red-spotted grouper nervous necrosis virus and promotes virus internalization through clathrin-mediated endocytosis.
Nervous necrosis virus (NNV) can infect many species of fish and causes serious acute or persistent infection. However, its pathogenic mechanism is still far from clear. Specific cellular surface receptors are crucial determinants of the species tropism of a virus and its pathogenesis. Here, the heat shock protein 90ab1 of marine model fish species marine medaka (MmHSP90ab1) was identified as a novel receptor of red-spotted grouper NNV (RGNNV). MmHSP90ab1 interacted directly with RGNNV capsid protein (CP). Specifically, MmHSP90ab1 bound to the linker region (LR) of CP through its NM domain. Inhibition of MmHSP90ab1 by HSP90-specific inhibitors or MmHSP90ab1 siRNA caused significant inhibition of viral binding and entry, whereas its overexpression led to the opposite effect. The binding of RGNNV to cultured marine medaka hMMES1 cells was inhibited by blocking cell surface-localized MmHSP90ab1 with anti-HSP90β antibodies or pretreating virus with recombinant MmHSP90ab1 or MmHSP90ab1-NM protein, indicating MmHSP90ab1 was an attachment receptor for RGNNV. Furthermore, we found that MmHSP90ab1 formed a complex with CP and marine medaka heat shock cognate 70, a known NNV receptor. Exogenous expression of MmHSP90ab1 independently facilitated the internalization of RGNNV into RGNNV impenetrable cells (HEK293T), which was blocked by chlorpromazine, an inhibitor of clathrin-dependent endocytosis. Further study revealed that MmHSP90ab1 interacted with the marine medaka clathrin heavy chain. Collectively, these data suggest that MmHSP90ab1 is a functional part of the RGNNV receptor complex and involved in the internalization of RGNNV via the clathrin endocytosis pathway
MiR-202-5p Inhibits RIG-I-Dependent Innate Immune Responses to RGNNV Infection by Targeting TRIM25 to Mediate RIG-I Ubiquitination
The RIG-I-like receptors (RLRs) signaling pathway is essential for inducing type I interferon (IFN) responses to viral infections. Meanwhile, it is also tightly regulated to prevent uncontrolled immune responses. Numerous studies have shown that microRNAs (miRNAs) are essential for the regulation of immune processes, however, the detailed molecular mechanism of miRNA regulating the RLRs signaling pathway remains to be elucidated. Here, our results showed that miR-202-5p was induced by red spotted grouper nervous necrosis virus (RGNNV) infection in zebrafish. Overexpression of miR-202-5p led to reduced expression of IFN 1 and its downstream antiviral genes, thus facilitating viral replication in vitro. In comparison, significantly enhanced levels of IFN 1 and antiviral genes and significantly low viral burden were observed in the miR-202-5p-/- zebrafish compared to wild type zebrafish. Subsequently, zebrafish tripartite motif-containing protein 25 (zbTRIM25) was identified as a target of miR-202-5p in both zebrafish and humans. Ectopic expression of miR-202-5p suppressed zbTRIM25-mediated RLRs signaling pathway. Furthermore, we showed that miR-202-5p inhibited zbTRIM25-mediated zbRIG-I ubiquitination and activation of IFN production. In conclusion, we demonstrate that RGNNV-inducible miR-202-5p acts as a negative regulator of zbRIG-I-triggered antiviral innate response by targeting zbTRIM25. Our study reveals a novel mechanism for the evasion of the innate immune response controlled by RGNNV
The CXC Chemokine Receptors in Four-Eyed Sleeper (Bostrychus sinensis) and Their Involvement in Responding to Skin Injury
CXC Chemokine signaling plays an important role in wound healing. The four-eyed sleeper (Bostrychus sinensis) is a commercially important marine fish, which is prone to suffer skin ulceration at high temperature seasons, leading to mass mortality of fish in aquaculture farms. The genetic background related to skin ulceration and wound healing has remained unknown in this fish. Herein, we identified 10 differentially expressed Bostrychus sinensis CXC chemokine receptors (BsCXCRs) in skin ulcerated fish by de novo transcriptome sequencing. The transcripts of these BsCXCRs were classified in seven types, including BsCXCR1a/1b, BsCXCR2, BsCXCR3a1/3a2, BsCXCR4a/4b, and BsCXCR5-7, and BsCXCR6 was the first CXCR6 homologue experimentally identified in teleost fish. These BsCXCRs were further characterized in gene and protein structures, as well as phylogenetics, and the results revealed that BsCXCRs have expanded to divergent homologues. Our results showed that, in healthy fish, the BsCXCR transcripts was mainly distributed in the muscle and immune related organs, and that BsCXCR1a/1b proteins located in the cytomembrane, BsCXCR4a/4b/5/6 in the cytomembrane and perinuclear region, and BsCXCR3a1/3a2/7 in the cytomembrane, perinuclear region, and nuclear membrane, respectively. In skin injured fish, the transcripts of all BsCXCRs were transiently increased within one hour after injury, suggesting the involvement of BsCXCRs into the early inflammatory response to skin injury in the four-eyed sleeper. These results are valuable for understanding the evolutionary events of fish CXCR genes and provide insights into the roles of CXCR family in fish skin injury
Usefulness of Cathepsin S to Predict Risk for Obstructive Sleep Apnea among Patients with Type 2 Diabetes
Background. Obstructive sleep apnea (OSA) was highly prevalent in patients with type 2 diabetes (T2D). Cathepsin S (CTSS), a cysteine protease, is involved in the inflammatory activity in T2D and hypoxia conditions. The aim of the study was to evaluate whether CTSS could be involved in the inflammatory reaction of OSA in patients with T2D. Methods. We included 158 participants in this study matched for age, gender, and body mass index in 4 groups (control, non-OSA&T2D, OSA&non-T2D, and OSA&T2D). After overnight polysomnography, we collected the clinical data including anthropometrical characteristics, blood pressure, and fasting blood samples in the morning. Plasma CTSS concentration was evaluated using the human Magnetic Luminex Assay. Results. Compared with the control group, both the non-OSA&T2D group and the OSA&non-T2D group showed higher CTSS levels. Plasma CTSS expression was significantly increased in subjects with OSA&T2D compared to subjects with non-OSA&T2D. The OSA&T2D group had higher CTSS levels than the OSA&non-T2D group, but there were no statistically significant differences. Plasma CTSS levels showed significant correlation with the apnea-hypopnea index (AHI) (r=0.559, P<0.001) and plasma fasting blood glucose (r=0.427, P<0.001). After adjusting confounding factors, plasma CTSS levels were independently associated with the AHI (Beta: 0.386, 95% confidence intervals (CI): 21.988 to 57.781; P<0.001). Furthermore, we confirmed the higher pinpoint accuracy of plasma CTSS in the diagnosis of OSA (area under the curve: 0.868). Conclusions. Plasma CTSS expression was significantly elevated in the OSA&T2D group and was independently associated with the AHI; it could be a biomarker with a positive diagnostic value on diagnosing OSA among patients with T2D
Spatial Variability of Active Layer Thickness along the Qinghai–Tibet Engineering Corridor Resolved Using Ground-Penetrating Radar
Active layer thickness (ALT) is a sensitive indicator of response to climate change. ALT has important influence on various aspects of the regional environment such as hydrological processes and vegetation. In this study, 57 ground-penetrating radar (GPR) sections were surveyed along the Qinghai–Tibet Engineering Corridor (QTEC) during 2018–2021, covering a total length of 58.5 km. The suitability of GPR-derived ALT was evaluated using in situ measurements and reference datasets, for which the bias and root mean square error were approximately −0.16 and 0.43 m, respectively. The GPR results show that the QTEC ALT was in the range of 1.25–6.70 m (mean: 2.49 ± 0.57 m). Observed ALT demonstrated pronounced spatial variability at both regional and fine scales. We developed a statistical estimation model that explicitly considers the soil thermal regime (i.e., ground thawing index, TIg), soil properties, and vegetation. This model was found suitable for simulating ALT over the QTEC, and it could explain 52% (R2 = 0.52) of ALT variability. The statistical model shows that a difference of 10 °C.d in TIg is equivalent to a change of 0.67 m in ALT, and an increase of 0.1 in the normalized difference vegetation index (NDVI) is equivalent to a decrease of 0.23 m in ALT. The fine-scale (<1 km) variation in ALT could account for 77.6% of the regional-scale (approximately 550 km) variation. These results provide a timely ALT benchmark along the QTEC, which can inform the construction and maintenance of engineering facilities along the QTEC
Spatial Variability of Active Layer Thickness along the Qinghai–Tibet Engineering Corridor Resolved Using Ground-Penetrating Radar
Active layer thickness (ALT) is a sensitive indicator of response to climate change. ALT has important influence on various aspects of the regional environment such as hydrological processes and vegetation. In this study, 57 ground-penetrating radar (GPR) sections were surveyed along the Qinghai–Tibet Engineering Corridor (QTEC) during 2018–2021, covering a total length of 58.5 km. The suitability of GPR-derived ALT was evaluated using in situ measurements and reference datasets, for which the bias and root mean square error were approximately −0.16 and 0.43 m, respectively. The GPR results show that the QTEC ALT was in the range of 1.25–6.70 m (mean: 2.49 ± 0.57 m). Observed ALT demonstrated pronounced spatial variability at both regional and fine scales. We developed a statistical estimation model that explicitly considers the soil thermal regime (i.e., ground thawing index, TIg), soil properties, and vegetation. This model was found suitable for simulating ALT over the QTEC, and it could explain 52% (R2 = 0.52) of ALT variability. The statistical model shows that a difference of 10 °C.d in TIg is equivalent to a change of 0.67 m in ALT, and an increase of 0.1 in the normalized difference vegetation index (NDVI) is equivalent to a decrease of 0.23 m in ALT. The fine-scale (<1 km) variation in ALT could account for 77.6% of the regional-scale (approximately 550 km) variation. These results provide a timely ALT benchmark along the QTEC, which can inform the construction and maintenance of engineering facilities along the QTEC