2 research outputs found

    Multi-Beam Scan Analysis with a Clinical LINAC for High Resolution Cherenkov-Excited Molecular Luminescence Imaging in Tissue.

    Get PDF
    Cherenkov-excited luminescence scanned imaging (CELSI) is achieved with external beam radiotherapy to map out molecular luminescence intensity or lifetime in tissue. Just as in fluorescence microscopy, the choice of excitation geometry can affect the imaging time, spatial resolution and contrast recovered. In this study, the use of spatially patterned illumination was systematically studied comparing scan shapes, starting with line scan and block patterns and increasing from single beams to multiple parallel beams and then to clinically used treatment plans for radiation therapy. The image recovery was improved by a spatial-temporal modulation-demodulation method, which used the ability to capture simultaneous images of the excitation Cherenkov beam shape to deconvolve the CELSI images. Experimental studies used the multi-leaf collimator on a clinical linear accelerator (LINAC) to create the scanning patterns, and image resolution and contrast recovery were tested at different depths of tissue phantom material. As hypothesized, the smallest illumination squares achieved optimal resolution, but at the cost of lower signal and slower imaging time. Having larger excitation blocks provided superior signal but at the cost of increased radiation dose and lower resolution. Increasing the scan beams to multiple block patterns improved the performance in terms of image fidelity, lower radiation dose and faster acquisition. The spatial resolution was mostly dependent upon pixel area with an optimized side length near 38mm and a beam scan pitch of P = 0.33, and the achievable imaging depth was increased from 14mm to 18mm with sufficient resolving power for 1mm sized test objects. As a proof-of-concept, in-vivo tumor mouse imaging was performed to show 3D rendering and quantification of tissue pO2 with values of 5.6mmHg in a tumor and 77mmHg in normal tissue

    Cherenkov Excited Short-Wavelength Infrared Fluorescence Imaging in vivo with External Beam Radiation

    Get PDF
    Cherenkov emission induced by external beam radiation therapy from a clinical linear accelerator (LINAC) can be used to excite phosphors deep in biological tissues. As with all luminescence imaging, there is a desire to minimize the spectral overlap between the excitation light and emission wavelengths, here between the Cherenkov and the phosphor. Cherenkov excited short-wavelength infrared (SWIR, 1000 to 1700 nm) fluorescence imaging has been demonstrated for the first time, using long Stokes-shift fluorophore PdSe quantum dots (QD) with nanosecond lifetime and an optimized SWIR detection. The 1  /  λ2 intensity spectrum characteristic of Cherenkov emission leads to low overlap of this into the fluorescence spectrum of PdSe QDs in the SWIR range. Additionally, using a SWIR camera itself inherently ignores the stronger Cherenkov emission wavelengths dominant across the visible spectrum. The SWIR luminescence was shown to extend the depth sensitivity of Cherenkov imaging, which could be used for applications in radiotherapy sensing and imaging in human tissue with targeted molecular probes
    corecore