6 research outputs found

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    An FDM-Based Dynamic Zoning Method for Disturbed Rock Masses above a Longwall Mining Panel

    No full text
    Underground longwall mining can seriously disturb the surrounding rock masses above the panel. A surface cracking zone, continuous deformation zone, fractured zone, and caved zone can be formed in the overlying strata (termed the “four zones”), which may further result in the spontaneous combustion of coal seams and water inrush. It is essential to study and predict the development characteristics of the four zones induced by longwall mining to guarantee mining safety. These four zones are developed during the mining process, and the mechanical properties in different regions correspondingly differ. Thus, the dynamic zoning characteristics of the disturbed rock masses should be considered in any simulations. In this paper, an FDM-based dynamic zoning method for disturbed rock masses above a longwall mining panel is proposed. This method is mainly composed of four stages: (1) establishing a simplified complete stress-strain curve; (2) determining the zoning criteria; (3) adaptively adjusting the mechanical parameters of the disturbed rock mass; and (4) numerically modeling the longwall mining based on the FDM. The proposed method was applied to a study site in the Taixi coal mine. The dynamic development process of the four zones induced by longwall mining was clearly observed in the modeling procedure. The numerical modeling results achieved in this work, including the periodical coal-seam roof caving and the dynamic development characteristics of the four zones, are consistent with the observed distribution and other studies. The heights of the caved and fractured zones are basically consistent with the empirical formula. Thus, the dynamic zoning method can analyze and predict the dynamic development characteristics of four regions
    corecore