49 research outputs found

    Differentially Private Diffusion Auction: The Single-unit Case

    Full text link
    Diffusion auction refers to an emerging paradigm of online marketplace where an auctioneer utilises a social network to attract potential buyers. Diffusion auction poses significant privacy risks. From the auction outcome, it is possible to infer hidden, and potentially sensitive, preferences of buyers. To mitigate such risks, we initiate the study of differential privacy (DP) in diffusion auction mechanisms. DP is a well-established notion of privacy that protects a system against inference attacks. Achieving DP in diffusion auctions is non-trivial as the well-designed auction rules are required to incentivise the buyers to truthfully report their neighbourhood. We study the single-unit case and design two differentially private diffusion mechanisms (DPDMs): recursive DPDM and layered DPDM. We prove that these mechanisms guarantee differential privacy, incentive compatibility and individual rationality for both valuations and neighbourhood. We then empirically compare their performance on real and synthetic datasets

    FMRFamide-Like Peptide 22 Influences the Head Movement, Host Finding, and Infection of Heterodera glycines

    Get PDF
    The FMRFamide-like peptides (FLPs) represent the largest family of nematode neuropeptides and are involved in multiple parasitic activities. The immunoreactivity to FMRFamide within the nervous system of Heterodera glycines, the most economically damaging parasite of soybean [Glycine max L. (Merr)], has been reported in previous research. However, the family of genes encoding FLPs of H. glycines were not identified and functionally characterized. In this study, an FLP encoding gene Hg-flp-22 was cloned from H. glycines, and its functional characterization was uncovered by using in vitro RNA interference and application of synthetic peptides. Bioinformatics analysis showed that flp-22 is widely expressed in multiple nematode species, where they encode the highly conserved KWMRFamide motifs. Quantitative real-time (qRT)-PCR results revealed that Hg-flp-22 was highly expressed in the infective second-stage juveniles (J2s) and adult males. Silencing of Hg-flp-22 resulted in the reduced movement of J2s to the host root and reduced penetration ability, as well as a reduction in their subsequent number of females. Behavior and infection assays demonstrated that application of synthetic peptides Hg-FLP-22b (TPQGKWMRFa) and Hg-FLP-22c (KMAIEGGKWVRFa) significantly increased the head movement frequency and host invasion abilities in H. glycines but not in Meloidogyne incognita. In addition, the number of H. glycines females on the host roots was found to be significantly higher in Hg-FLP-22b treated nematodes than the ddH2O-treated control J2s. These results presented in this study elucidated that Hg-flp-22 plays a role in regulating locomotion and infection of H. glycines. This suggests the potential of FLP signaling as putative control targets for H. glycines in soybean production

    Prediction of Fracture Behavior of 6061 Aluminum Alloy Based on GTN Model

    No full text
    To determine the Gurson-Tvergaard-Needleman (GTN)damage model parameters of 6061 aluminum alloy after secondary heat treatment, the uniaxial tensile test was carried out on the aluminum alloy circular arc specimen, and the mechanical properties parameters and the load-displacement curve of aluminum alloy tube were obtained. With the help of the finite element reverse method, scanning electron microscope and a orthogonal test method, the GTN damage model parameters (f0, fN, fC, and fF) were calibrated, and their values were 0.004535, 0.04, 0.1, and 0.2135, respectively. Then the shear specimen and notch specimen were designed to verify the damage model, the results show that the obtained GTN damage model parameters can effectively predict the fracture failure of 6061 aluminum alloy after secondary heat treatment during the tensile process

    Combined Exposure to Fructose and Bisphenol A Exacerbates Abnormal Lipid Metabolism in Liver of Developmental Male Rats

    No full text
    The aim of this study was to investigate whether combined exposure to fructose and bisphenol A (BPA) has a synergistic effect on abnormal lipid metabolism in the liver of developmental male rats and its possible mechanism. Fifty weaned male Wistar rats were divided into five groups: the control, 13% fructose, 20% fructose, 1 µg/mL BPA, and 13% fructose + 1 µg/mL BPA (combined exposure). Rats were exposed to fructose and/or BPA through drinking water for eight weeks. Genes or proteins regulating lipid metabolism include sterol regulatory element binding protein 1 (SREBP1), adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), zinc α 2 glycoprotein (ZAG) and estrogen receptor α (ERα), and the expression of proteins regulating inflammatory response, such as TLR4 and NF-κB, were determined. Serum total cholesterol (T-CHO), triglyceride (TG), low, high density lipoprotein cholesterol (LDL-C, HDL-C), blood glucose, insulin, IL-17 and TNF-α levels were also measured. Liver tissue morphology was observed by H&E staining. The results showed that the levels of gene and protein catalyzing lipogenesis were increased (SREBP1, ACC1 and FAS), while those catalyzing lipolysis were decreased (ATGL, HSL and ZAG), accompanied by dyslipidemia, insulin resistance and hepatic fat accumulation, and there were higher expression of TLR4 and NF-κB protein and lower expression of ERα protein in liver, and increased serum IL-17 and TNF-α levels in fructose and/or BPA exposed rats compared with controls. Moreover, the above indicators were more serious in combined exposure group than in single exposure group. Therefore, abnormal lipid metabolism in the liver of developmental rats could be exacerbated by combined exposed to fructose and BPA

    Decreased Capacity for Sperm Production Induced by Perinatal Bisphenol A Exposure Is Associated with an Increased Inflammatory Response in the Offspring of C57BL/6 Male Mice

    No full text
    Many previous studies have indicated the adverse effects of bisphenol A (BPA) on sperm production and quality; however, the mechanisms underlying BPA male reproductive toxicity have yet to be elucidated. The main purpose of this study was to investigate the effect of perinatal exposure to BPA on the spermatogenic capacity of male offspring, and to explore the possible influence of inflammatory responses in BPA reproductive toxicity. Twenty-one pregnant C57BL/6mice were randomly divided into three groups: a control group, a group receiving 0.2 μg/mL (LBPA), and a group receiving 2 μg/mL of BPA (HBPA), all via drinking water from gestational day 6 to the end of lactation. After weaning, one male mouse was randomly selected from each group (n = 7/group); these three mice were fed a normal diet and drinking water for 1 month. Levels of serum testosterone (T) and tumor necrosis factor (TNF)-α were then measured in all mice. Sperm count and the proportion of sperm malformation were also determined. The levels of Toll-like receptor 4 (TLR4), nuclear factor (NF)-κB, and aryl hydrocarbon receptor (AhR) protein expression in the testis tissue were determined. Analysis showed that the proportion of sperm malformation increased in the LBPA and HBPA groups (p < 0.05). Sperm count significantly decreased only in the HBPA group (p < 0.05), while the levels of serum TNF-α increased in the LBPA and HBPA groups (p < 0.05). Levels of serum T decreased significantly in the HBPA group, compared with controls (p < 0.05). Levels of TLR4 and NF-κB protein expression in the testis were significantly higher in the LBPA and HBPA groups (p < 0.05 or p < 0.01), while AhR protein expression was higher and seminiferous tubules in the testis showed more damage in the HBPA group compared to controls (p < 0.05 and p < 0.01, respectively). Our results showed that perinatal exposure to low or high doses of BPA decreased the capacity for spermatogenesis in male offspring, which may be associated with an inflammatory response activated by the TLR4/ NF-κB and AhR signaling pathways in the testis

    Flexible Capturing Application for Enhanced Generation of EPCIS Events

    No full text
    Radio frequency identification (RFID) technology and electronic product code (EPC) technology have been widely used to identify and keep track of physical objects. EPCglobal proposed the EPC network which consists of several components such as application level events (ALE) and EPC information service (EPCIS) to deal with the captured data from different layers. Many studies mostly concentrated on dealing with the RFID tag data in ALE, as well as querying and sharing EPCIS events in EPCIS. However, there is no well-known study on specifying how to generate higher level EPCIS events. The event types and semantic event fields are both uncertain for the capturing application to generate EPCIS events. Therefore, this paper proposes the flexible capturing application (FCA) to solve the problem that the event types and semantic event fields are both uncertain. FCA specifies generation rules about the four EPCIS event types. All the generation rules are matched for the incoming tag data to determine the event types. Event fields are generated with tag data and other sources of data after deciding event types. Thus, FCA can generate EPCIS events arising from supply chain activity. We evaluate our approaches by means of simulation and real experiments. Our experimental results indicate that FCA can be effective in processing EPCIS events data. We conclude with suggestions for future work

    Visible and Near-Infrared Broadband Absorber Based on Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-Wu

    No full text
    A high absorption broadband absorber based on MXene and tungsten nanospheres in visible and near-infrared bands is proposed. The absorber has a maximum absorption of 100% and an average absorption of 95% in the wavelength range of 400–2500 nm. The theoretical mechanism and parameter adjustability of the absorber are analyzed by FDTD solutions. The results show that the structural parameters can effectively adjust the absorption performance. The good absorption performance is due to the action of the local surface plasmon resonance coupling with the gap surface plasmon resonance and Fabry–Perot resonance. The simulation results show that the absorber is insensitive to the polarization and oblique incidence angle of incident light, and that high absorption and broadband can be maintained when the oblique incidence angle is up to 60°
    corecore