3,360 research outputs found

    Tensor Completion via Leverage Sampling and Tensor QR Decomposition for Network Latency Estimation

    Full text link
    In this paper, we consider the network latency estimation, which has been an important metric for network performance. However, a large scale of network latency estimation requires a lot of computing time. Therefore, we propose a new method that is much faster and maintains high accuracy. The data structure of network nodes can form a matrix, and the tensor model can be formed by introducing the time dimension. Thus, the entire problem can be be summarized as a tensor completion problem. The main idea of our method is improving the tensor leverage sampling strategy and introduce tensor QR decomposition into tensor completion. To achieve faster tensor leverage sampling, we replace tensor singular decomposition (t-SVD) with tensor CSVD-QR to appoximate t-SVD. To achieve faster completion for incomplete tensor, we use the tensor L2,1L_{2,1}-norm rather than traditional tensor nuclear norm. Furthermore, we introduce tensor QR decomposition into alternating direction method of multipliers (ADMM) framework. Numerical experiments witness that our method is faster than state-of-art algorithms with satisfactory accuracy.Comment: 20 pages, 7 figure

    Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in molten salt

    Get PDF
    This communication presents a novel kind of silicon nanomaterial: freestanding Si nanowire arrays (Si NWAs), which are synthesized facilely by one-step template-free electro-deoxidation of SiO2 in molten CaCl2. The self-assembling growth process of this material is also investigated preliminarily

    TMRT observations of 26 pulsars at 8.6 GHz

    Full text link
    Integrated pulse profiles at 8.6~GHz obtained with the Shanghai Tian Ma Radio Telescope (TMRT) are presented for a sample of 26 pulsars. Mean flux densities and pulse width parameters of these pulsars are estimated. For eleven pulsars these are the first high-frequency observations and for a further four, our observations have a better signal-to-noise ratio than previous observations. For one (PSR J0742-2822) the 8.6~GHz profiles differs from previously observed profiles. A comparison of 19 profiles with those at other frequencies shows that in nine cases the separation between the outmost leading and trailing components decreases with frequency, roughly in agreement with radius-to-frequency mapping, whereas in the other ten the separation is nearly constant. Different spectral indices of profile components lead to the variation of integrated pulse profile shapes with frequency. In seven pulsars with multi-component profiles, the spectral indices of the central components are steeper than those of the outer components. For the 12 pulsars with multi-component profiles in the high-frequency sample, we estimate the core width using gaussian fitting and discuss the width-period relationship.Comment: 33 pages, 49 figures, 5 Tables; accepted by Ap
    corecore