7,459 research outputs found

    A new strategy for better genome assembly from very short reads

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the rapid development of the next generation sequencing (NGS) technology, large quantities of genome sequencing data have been generated. Because of repetitive regions of genomes and some other factors, assembly of very short reads is still a challenging issue.</p> <p>Results</p> <p>A novel strategy for improving genome assembly from very short reads is proposed. It can increase accuracies of assemblies by integrating <it>de novo </it>contigs, and produce comparative contigs by allowing multiple references without limiting to genomes of closely related strains. Comparative contigs are used to scaffold <it>de novo </it>contigs. Using simulated and real datasets, it is shown that our strategy can effectively improve qualities of assemblies of isolated microbial genomes and metagenomes.</p> <p>Conclusions</p> <p>With more and more reference genomes available, our strategy will be useful to improve qualities of genome assemblies from very short reads. Some scripts are provided to make our strategy applicable at <url>http://code.google.com/p/cd-hybrid/</url>.</p

    Glutamate Excitotoxicity Inflicts Paranodal Myelin Splitting and Retraction.

    Get PDF
    Paranodal myelin damage is observed in white matter injury. However the culprit for such damage remains unknown. By coherent anti-Stokes Raman scattering imaging of myelin sheath in fresh tissues with sub-micron resolution, we observed significant paranodal myelin splitting and retraction following glutamate application both ex vivo and in vivo. Multimodal multiphoton imaging further showed that glutamate application broke axo-glial junctions and exposed juxtaparanodal K+ channels, resulting in axonal conduction deficit that was demonstrated by compound action potential measurements. The use of 4-aminopyridine, a broad-spectrum K+ channel blocker, effectively recovered both the amplitude and width of compound action potentials. Using CARS imaging as a quantitative readout of nodal length to diameter ratio, the same kind of paranodal myelin retraction was observed with applications of Ca2+ ionophore A23187. Moreover, exclusion of Ca2+ from the medium or application of calpain inhibitor abolished paranodal myelin retraction during glutamate exposure. Examinations of glutamate receptor agonists and antagonists further showed that the paranodal myelin damage was mediated by NMDA and kainate receptors. These results suggest that an increased level of glutamate in diseased white matter could impair paranodal myelin through receptor-mediated Ca2+ overloading and subsequent calpain activation

    2-(1H-Benzotriazol-1-yl)acetohydrazide

    Get PDF
    The title compound, C8H9N5O, was synthesized by the reaction of ethyl 2-(benzotriazol-1-yl)acetate with hydrazine hydrate in ethanol. In the amide group, the C—N bond is relatively short [1.3283 (16) Å], suggesting some degree of electronic delocalization in the mol­ecule. In the crystal structure, mol­ecules are linked into infinite chains along the a axis by inter­molecular O—H⋯N hydrogen bonding

    Diagnostic Accuracy of CEUS LI-RADS for the Characterization of Liver Nodules 20 mm or Smaller in Patients at Risk for Hepatocellular Carcinoma.

    Get PDF
    Background: American College of Radiology contrast agent–enhanced US Liver Imaging Reporting and Data System (CEUS LI-RADS) was developed to improve the accuracy of hepatocellular carcinoma (HCC) diagnosis at contrast agent2enhanced US. However, to the knowledge of the authors, the diagnostic accuracy of the system in characterization of liver nodules 20 mm or smaller has not been fully evaluated. Purpose: To evaluate the diagnostic accuracy of CEUS LI-RADS in diagnosing HCC in liver nodules 20 mm or smaller in patients at risk for HCC. Materials and Methods: Between January 2015 and February 2018, consecutive patients at risk for HCC presenting with untreated liver nodules 20 mm or less were enrolled in this retrospective double-reader study. Each nodule was categorized according to the CEUS LI-RADS and World Federation for Ultrasound in Medicine and Biology (WFUMB)–European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) criteria. Diagnostic performance of CEUS LI-RADS and WFUMB-EFSUMB characterization was evaluated by using tissue histologic analysis, multiphase contrast-enhanced CT and MRI, and imaging follow-up as reference standard and compared by using McNemar test. Results: The study included 175 nodules (mean diameter, 16.1 mm 6 3.4) in 172 patients (mean age, 51.8 years 6 10.6; 136 men). The sensitivity of CEUS LR-5 versus WFUMB-EFSUMB criteria in diagnosing HCC was 73.3% (95% confidence inter-val [CI]: 63.8%, 81.5%) versus 88.6% (95% CI: 80.9%, 94%), respectively (P, .001). The specificity of CEUS LR-5 versus WFUMB-EFSUMB criteria was 97.1% (95% CI: 90.1%, 99.7%) versus 87.1% (95% CI: 77%, 94%), respectively (P = .02). No malignant lesions were found in CEUS LR-1 and LR-2 categories. Only two nodules (of 41; 5%, both HCC) were malignant in CEUS LR-3 category. The incidences of HCC in CEUS LR-4, LR-5, and LR-M were 48% (11 of 23), 98% (77 of 79), and 75% (15 of 20), respectively. Two of 175 (1.1%) histologic analysis2confirmed intrahepatic cholangiocarcinomas were categorized as CEUS LR-M by CEUS LI-RADS and misdiagnosed as HCC by WFUMB-EFSUMB criteria. Conclusion: The contrast-enhanced US Liver Imaging Reporting and Data System (CEUS LI-RADS) algorithm was an effective tool for characterization of small (≤20 mm) liver nodules in patients at risk for hepatocellular carcinoma (HCC). Compared with World Federation for Ultrasound in Medicine and Biology2European Federation of Societies for Ultrasound in Medicine and Biology criteria, CEUS LR-5 demonstrated higher specificity for diagnosing small HCCs with lower sensitivity

    1-(2-Chloro­benzyl­idene)-2-(2,4-dinitro­phen­yl)hydrazine

    Get PDF
    In the title compound, C13H9ClN4O4, there are two crystallographically independent mol­ecules in the asymmetric unit, which have very similar conformations. The C=N—N angles in each independent mol­ecule are 115.0 (2) and 116.6 (2)°, which are significantly smaller than the ideal value of 120° expected for sp 2-hybridized N atoms. This is probably a consequence of repulsion between the nitro­gen lone pairs and the adjacent N—N bonds. Two bifurcated intra­molecular N—H⋯O hydrogen bonds help to establish the mol­ecular conformation and consolidate the crystal packing
    corecore