6,211 research outputs found

    The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma

    Get PDF
    By decomposing the distribution functions and color field to regular and fluctuation parts, the solution of the semi-classical kinetic equations of quark-gluon plasma is analyzed. Through expanding the kinetic equations of the fluctuation parts to third order, the nonlinear permittivity including the self-interaction of gauge field is obtained and a rough numerical estimate is given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let

    Topological Dirac states beyond π\pi orbitals for silicene on SiC(0001) surface

    Full text link
    The discovery of intriguing properties related to the Dirac states in graphene has spurred huge interest in exploring its two-dimensional group-IV counterparts, such as silicene, germanene, and stanene. However, these materials have to be obtained via synthesizing on substrates with strong interfacial interactions, which usually destroy their intrinsic π\pi(pzp_z)-orbital Dirac states. Here we report a theoretical study on the existence of Dirac states arising from the px,yp_{x,y} orbitals instead of pzp_z orbitals in silicene on 4H-SiC(0001), which survive in spite of the strong interfacial interactions. We also show that the exchange field together with the spin-orbital coupling give rise to a detectable band gap of 1.3 meV. Berry curvature calculations demonstrate the nontrivial topological nature of such Dirac states with a Chern number C=2C = 2, presenting the potential of realizing quantum anomalous Hall effect for silicene on SiC(0001). Finally, we construct a minimal effective model to capture the low-energy physics of this system. This finding is expected to be also applicable to germanene and stanene, and imply great application potentials in nanoelectronics.Comment: 6 Figures , Accepted by Nano Letter
    • …
    corecore