4,986 research outputs found

    X-CLIP: End-to-End Multi-grained Contrastive Learning for Video-Text Retrieval

    Full text link
    Video-text retrieval has been a crucial and fundamental task in multi-modal research. The development of video-text retrieval has been considerably promoted by large-scale multi-modal contrastive pre-training, which primarily focuses on coarse-grained or fine-grained contrast. However, cross-grained contrast, which is the contrast between coarse-grained representations and fine-grained representations, has rarely been explored in prior research. Compared with fine-grained or coarse-grained contrasts, cross-grained contrast calculate the correlation between coarse-grained features and each fine-grained feature, and is able to filter out the unnecessary fine-grained features guided by the coarse-grained feature during similarity calculation, thus improving the accuracy of retrieval. To this end, this paper presents a novel multi-grained contrastive model, namely X-CLIP, for video-text retrieval. However, another challenge lies in the similarity aggregation problem, which aims to aggregate fine-grained and cross-grained similarity matrices to instance-level similarity. To address this challenge, we propose the Attention Over Similarity Matrix (AOSM) module to make the model focus on the contrast between essential frames and words, thus lowering the impact of unnecessary frames and words on retrieval results. With multi-grained contrast and the proposed AOSM module, X-CLIP achieves outstanding performance on five widely-used video-text retrieval datasets, including MSR-VTT (49.3 R@1), MSVD (50.4 R@1), LSMDC (26.1 R@1), DiDeMo (47.8 R@1) and ActivityNet (46.2 R@1). It outperforms the previous state-of-theart by +6.3%, +6.6%, +11.1%, +6.7%, +3.8% relative improvements on these benchmarks, demonstrating the superiority of multi-grained contrast and AOSM.Comment: 13 pages, 6 figures, ACMMM2

    A network SIS meta-population model with transportation flow

    Get PDF
    This paper considers a deterministic Susceptible-Infected-Susceptible (SIS) metapopulation model for the spread of a disease in a strongly connected network, where each node represents a large population. Individuals can travel between the nodes (populations). We derive a necessary and sufficient condition for the healthy equilibrium to be the unique equilibrium of the system, and then in fact it is asymptotically stable for all initial conditions (a sufficient condition for exponential stability is also given). If the condition is not satisfied, then there additionally exists a unique endemic equilibrium which is exponentially stable for all nonzero initial conditions. We then consider time-delay in the travel between nodes, and further investigate the role of the mobility rate that governs the flow of individuals between nodes in determining the convergence properties. We find that sometimes, increasing mobility helps the system converge to the healthy equilibrium.</p

    Superradiant Solid in Cavity QED Coupled to a Lattice of Rydberg Gas

    Full text link
    We study an optical cavity coupled to a lattice of Rydberg atoms, which can be represented by a generalized Dicke model. We show that the competition between the atomic interaction and atom-light coupling induces a rich phase diagram. A novel "superradiant solid" (SRS) phase is found, where both the superradiance and crystalline orders coexist. Different from the normal second order superradiance (SR) transition, here both the Solid-1/2 and SRS to SR phase transitions are first order. These results are confirmed by the large scale quantum Monte Carlo simulations.Comment: 5 pages,4 figure

    The spontaneous emergence of ordered phases in crumpled sheets

    Full text link
    X-ray tomography is performed to acquire 3D images of crumpled aluminum foils. We develop an algorithm to trace out the labyrinthian paths in the three perpendicular cross sections of the data matrices. The tangent-tangent correlation function along each path is found to decay exponentially with an effective persistence length that shortens as the crumpled ball becomes more compact. In the mean time, we observed ordered domains near the crust, similar to the lamellae phase mixed by the amorphous portion in lyotropic liquid crystals. The size and density of these domains grow with further compaction, and their orientation favors either perpendicular or parallel to the radial direction. Ordering is also identified near the core with an arbitrary orientation, exemplary of the spontaneous symmetry breaking

    Panorama phylogenetic diversity and distribution of type A influenza viruses based on their six internal gene sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type A influenza viruses are important pathogens of humans, birds, pigs, horses and some marine mammals. The viruses have evolved into multiple complicated subtypes, lineages and sublineages. Recently, the phylogenetic diversity of type A influenza viruses from a whole view has been described based on the viral external HA and NA gene sequences, but remains unclear in terms of their six internal genes (PB2, PB1, PA, NP, MP and NS).</p> <p>Methods</p> <p>In this report, 2798 representative sequences of the six viral internal genes were selected from GenBank using the web servers in NCBI Influenza Virus Resource. Then, the phylogenetic relationships among the representative sequences were calculated using the software tools MEGA 4.1 and RAxML 7.0.4. Lineages and sublineages were classified mainly according to topology of the phylogenetic trees and distribution of the viruses in hosts, regions and time.</p> <p>Results</p> <p>The panorama phylogenetic trees of the six internal genes of type A influenza viruses were constructed. Lineages and sublineages within the type based on the six internal genes were classified and designated by a tentative universal numerical nomenclature system. The diversity of influenza viruses circulating in different regions, periods, and hosts based on the panorama trees was analyzed.</p> <p>Conclusion</p> <p>This study presents the first whole views to the phylogenetic diversity and distribution of type A influenza viruses based on their six internal genes. It also proposes a tentative universal nomenclature system for the viral lineages and sublineages. These can be a candidate framework to generalize the history and explore the future of the viruses, and will facilitate future scientific communications on the phylogenetic diversity and evolution of the viruses. In addition, it provides a novel phylogenetic view (i.e. the whole view) to recognize the viruses including the origin of the pandemic A(H1N1) influenza viruses.</p

    Dimethyl 3,3′-diphenyl-2,2′-[(S)-thio­phene-2,5-diylbis(carbonyl­aza­nedi­yl)]dipropano­ate

    Get PDF
    The asymmetric unit of the title compound, C26H26N2O6S, contains two independent mol­ecules; each has twofold symmetry with the S atom and the mid-point of the C—C bond of the thio­phene ring located on a twofold rotation axis. In the two mol­ecules, the terminal benzene rings are oriented at dihedral angles of 65.8 (3) and 63.5 (3)° with respect to the central thio­phene rings. The meth­oxy­carbonyl group of one mol­ecule is disordered over two positions with site-occupancy factors of 0.277 (12) and 0.723 (12). Inter­molecular N—H⋯O hydrogen bonding is present in the crystal structure

    Diethyl 4-[4-(dimethyl­amino)phen­yl]-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate

    Get PDF
    In the title compound, C21H28N2O4, the dihydro­pyridine ring adopts a flattened boat conformation. The mean plane of the dihydro­pyridine ring and the attached benzene ring form a dihedral angle of 85.1 (1) Å. One of two ethyl fragments is disordered between two conformations in a 0.67 (4):0.33 (4) ratio. In the crystal structure, mol­ecules related by translation along the a axis are linked into chains via inter­molecular N—H⋯O hydrogen bonds
    • …
    corecore