10,648 research outputs found

    Validity of single-channel model for a spin-orbit coupled atomic Fermi gas near Feshbach resonances

    Full text link
    We theoretically investigate a Rashba spin-orbit coupled Fermi gas near Feshbach resonances, by using mean-field theory and a two-channel model that takes into account explicitly Feshbach molecules in the close channel. In the absence of spin-orbit coupling, when the channel coupling gg between the closed and open channels is strong, it is widely accepted that the two-channel model is equivalent to a single-channel model that excludes Feshbach molecules. This is the so-called broad resonance limit, which is well-satisfied by ultracold atomic Fermi gases of 6^{6}Li atoms and 40^{40}K atoms in current experiments. Here, with Rashba spin-orbit coupling we find that the condition for equivalence becomes much more stringent. As a result, the single-channel model may already be insufficient to describe properly an atomic Fermi gas of 40^{40}K atoms at a moderate spin-orbit coupling. We determine a characteristic channel coupling strength gcg_{c} as a function of the spin-orbit coupling strength, above which the single-channel and two-channel models are approximately equivalent. We also find that for narrow resonance with small channel coupling, the pairing gap and molecular fraction is strongly suppressed by SO coupling. Our results can be readily tested in 40^{40}K atoms by using optical molecular spectroscopy.Comment: 6 pages, 6 figure

    The spin-down accretion regime of Galactic ultra-luminous X-ray pulsar Swift J0243.6+6124

    Full text link
    The relative high fluxes of the Galactic ultra-luminous X-ray pulsar Swift J0243 allow a detailed study of its spin-down regime in quiescence state, for a first time. After the 2017 giant outburst, its spin frequencies show a linear decreasing trend with some variations due to minor outbursts. The linear spin-down rate is 1.9×1012\sim-1.9\times10^{-12} Hz/s during the period of lowest luminosity, from which one can infer a dipole field 1.75×1013\sim1.75\times10^{13} G. The ν˙L\dot{\nu}-L relation during the spin-down regime is complex, and the ν˙\dot{\nu} is close to 0 when the luminosity reaches both the high end (L380.3L_{38}\sim0.3) and the lowest value (L380.03L_{38}\sim0.03). The luminosity of zero-torque is different for the giant outburst and other minor outbursts. It is likely due to different accretion flows for different types of outburst, as evidenced by the differences of the spectra and pulse profiles at a similar luminosity for different types of outburst (giant or not). The pulse profile changes from double peaks in the spin-up state to a single broad peak in the low spin-down regime, indicating the emission beam/region is larger in the low spin-down regime. These results show that accretion is still ongoing in the low spin-down regime for which the neutron star is supposed to be in a propeller state.Comment: 7 pages, 7 figs, to appear in ApJ, comments welcom

    Superfluid density and Berezinskii-Kosterlitz-Thouless transition of a spin-orbit coupled Fulde-Ferrell superfluid

    Full text link
    We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT) transition of a two-dimensional Rashba spin-orbit coupled atomic Fermi gas with both in-plane and out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF, gapless FF, gapless topological FF and gapped topological FF states. Due to the FF paring, we show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane Zeeman field is applied along the \textit{x}-direction, the tensor component along the \textit{y}-direction ns,yyn_{s,yy} is generally larger than ns,xxn_{s,xx} in most parameter space. At zero temperature, there is always a discontinuity jump in ns,xxn_{s,xx} as the system evolves from a gapped FF into a gapless FF state. With increasing temperature, such a jump is gradually washed out. The critical BKT temperature has been calculated as functions of the spin-orbit coupling strength, interatomic interaction strength, in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have a significant critical BKT temperature, typically at the order of 0.1TF0.1T_{F}, where TFT_{F} is the Fermi degenerate temperature. Therefore, their observation is within the reach of current experimental techniques in cold-atom laboratories.Comment: 11 pages, 7 figure

    Dynamic Cytoophidia during Late-Stage Drosophila Oogenesis

    Get PDF
    CTP synthase (CTPS) catalyzes the final step of de novo synthesis of CTP. CTPS was first discovered to form filamentous structures termed cytoophidia in Drosophila ovarian cells. Subsequent studies have shown that cytoophidia are widely present in cells of three life domains. In the Drosophila ovary model, our previous studies mainly focused on the early and middle stages, with less involvement in the later stages. In this work, we focus on the later stages of female germline cells in Drosophila. We use live-cell imaging to capture the continuous dynamics of cytoophidia in Stages 10–12. We notice the heterogeneity of cytoophidia in the two types of germline cells (nurse cells and oocytes), manifested in significant differences in morphology, distribution, and dynamics. Surprisingly, we also find that neighboring nurse cells in the same egg chamber exhibit multiple dynamic patterns of cytoophidia over time. Although the described dynamics may be influenced by the in vitro incubation conditions, our observation provides an initial understanding of the dynamics of cytoophidia during late-stage Drosophila oogenesis

    Angular Stripe Phase in Spin-Orbital-Angular-Momentum Coupled Bose Condensates

    Full text link
    We propose that novel superfluid with supersolid-like properties - angular stripe phase - can be realized in a pancake-like spin-1/2 Bose gas with spin-orbital-angular-momentum coupling. We predict a rich ground-state phase diagram, including the vortex-antivortex pair phase, half-skyrmion phase, and two different angular stripe phases. The stripe phases feature modulated angular density-density correlation with sizable contrast and can occupy a relatively large parameter space. The low-lying collective excitations, such as the dipole and breathing modes, show distinct behaviors in different phases. The existence of the novel stripe phase is also clearly indicated in the energetic and dynamic instabilities of collective modes near phase transitions. Our predictions of the angular stripe phase could be readily examined in current cold-atom experiments with 87^{87}Rb and 41^{41}K.Comment: 5+3 pages, 4+2 figure

    Filamentation and inhibition of prokaryotic CTP synthase with ligands

    Get PDF
    Cytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels. CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens. Utilizing cryo‐electron microscopy, we determined the structure of Escherichia coli CTPS (ecCTPS) filament in complex with CTP, nicotinamide adenine dinucleotide (NADH), and the covalent inhibitor 6‐diazo‐5‐oxo‐ l‐norleucine (DON), achieving a resolution of 2.9 Å. We constructed a phylogenetic tree based on differences in filament‐forming interfaces and designed a variant to validate our hypothesis, providing an evolutionary perspective on CTPS filament formation. Our computational analysis revealed a solvent‐accessible ammonia tunnel upon DON binding. Through comparative structural analysis, we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts. Combining biochemical assays and structural analysis, we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS. Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS
    corecore