633 research outputs found

    Neutral Editing Framework for Diffusion-based Video Editing

    Full text link
    Text-conditioned image editing has succeeded in various types of editing based on a diffusion framework. Unfortunately, this success did not carry over to a video, which continues to be challenging. Existing video editing systems are still limited to rigid-type editing such as style transfer and object overlay. To this end, this paper proposes Neutral Editing (NeuEdit) framework to enable complex non-rigid editing by changing the motion of a person/object in a video, which has never been attempted before. NeuEdit introduces a concept of `neutralization' that enhances a tuning-editing process of diffusion-based editing systems in a model-agnostic manner by leveraging input video and text without any other auxiliary aids (e.g., visual masks, video captions). Extensive experiments on numerous videos demonstrate adaptability and effectiveness of the NeuEdit framework. The website of our work is available here: https://neuedit.github.ioComment: 18 pages, 14 figure

    The cap-snatching SFTSV endonuclease domain is an antiviral target

    Get PDF
    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (I

    Two levels above and one level below pedicle screw fixation for the treatment of unstable thoracolumbar fracture with partial or intact neurology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of unstable thoracolumbar fractures is controversial regarding short or long segment pedicle screw fixation. Although long level fixation is better, it can decrease one motion segment distally, thus increasing load to lower discs.</p> <p>Methods</p> <p>We retrospectively analyzed 31 unstable thoracolumbar fractures with partial or intact neurology. All patients were operated with posterior approach using pedicle screws fixed two levels above and one level below the fracture vertebra. No laminectomy, discectomy or decompression procedure was done. Posterior fusion was achieved in all. Post operative and at final follow-up radiological evaluation was done by measuring the correction and maintenance of kyphotic angle at thoracolumbar junction. Complications were also reported including implant failure.</p> <p>Results</p> <p>Average follow-up was 34 months. All patients had full recovery at final follow-up. Average kyphosis was improved from 26.7° to 4.1° postoperatively and to 6.3° at final follow-up. And mean pain scale was improved from 7.5 to 3.9 postoperatively and to 1.6 at final follow-up, All patients resumed their activity within six months. Only 4 (12%) complications were noted including only one hardware failure.</p> <p>Conclusion</p> <p>Two levels above and one level below pedicle screw fixation in unstable thoracolumbar burst fracture is useful to prevent progressive kyphosis and preserves one motion segment distally.</p

    CT-free quantitative SPECT for automatic evaluation of %thyroid uptake based on deep-learning

    Get PDF
    Purpose Quantitative thyroid single-photon emission computed tomography/computed tomography (SPECT/CT) requires computed tomography (CT)-based attenuation correction and manual thyroid segmentation on CT for %thyroid uptake measurements. Here, we aimed to develop a deep-learning-based CT-free quantitative thyroid SPECT that can generate an attenuation map (μ-map) and automatically segment the thyroid. Methods Quantitative thyroid SPECT/CT data (n = 650) were retrospectively analyzed. Typical 3D U-Nets were used for the μ-map generation and automatic thyroid segmentation. Primary emission and scattering SPECTs were inputted to generate a μ-map, and the original μ-map from CT was labeled (268 and 30 for training and validation, respectively). The generated μ-map and primary emission SPECT were inputted for the automatic thyroid segmentation, and the manual thyroid segmentation was labeled (280 and 36 for training and validation, respectively). Other thyroid SPECT/CT (n = 36) and salivary SPECT/CT (n = 29) were employed for verification. Results The synthetic μ-map demonstrated a strong correlation (R2 = 0.972) and minimum error (mean square error = 0.936 × 10−4, %normalized mean absolute error = 0.999%) of attenuation coefficients when compared to the ground truth (n = 30). Compared to manual segmentation, the automatic thyroid segmentation was excellent with a Dice similarity coefficient of 0.767, minimal thyroid volume difference of − 0.72mL, and a short 95% Hausdorff distance of 9.416mm (n = 36). Additionally, %thyroid uptake by synthetic μ-map and automatic thyroid segmentation (CT-free SPECT) was similar to that by the original μ-map and manual thyroid segmentation (SPECT/CT) (3.772 ± 5.735% vs. 3.682 ± 5.516%, p = 0.1090) (n = 36). Furthermore, the synthetic μ-map generation and automatic thyroid segmentation were successfully performed in the salivary SPECT/CT using the deep-learning algorithms trained by thyroid SPECT/CT (n = 29). Conclusion CT-free quantitative SPECT for automatic evaluation of %thyroid uptake can be realized by deep-learning.Key points Question 1: Can CT-free attenuation correction be realized for SPECT? Pertinent findings: The first deep-learning algorithm produced μ-map similar to CT-derived μ-map. Implications for patient care: Quantitative SPECT can be performed without CT. Therefore, patients can be protected from redundant radiation exposure of CT. Question 2: Can the thyroid be segmented without high-resolution images like CT? Pertinent findings: The second deep-learning algorithm successfully generated the thyroid segmentation map using low-resolution images such as the generated μ-map and SPECT. Implications for patient care: The thyroid segmentation process was dramatically reduced from 40–60min to < 1min, facilitating rapid patient care. Question 3: Can quantitative SPECT/CT be possible without CT? Pertinent findings: The two deep-learning algorithms deprived the quantitative thyroid SPECT/CT of CT. Implications for patient care: Repetitive CT acquisitions may be excluded in multiple SPECT/CT-based nuclear imaging studies, such as dosimetry

    Transient receptor potential channel TRPV4 mediates TGF-β1-induced differentiation of human ventricular fibroblasts

    Get PDF
    Background: Cardiac fibroblasts (CFs) are principal extracellular matrix-producing cells. In response to injury, CFs transdifferentiate into myofibroblasts. Intracellular calcium (Ca2+) signaling, involved in fibroblast proliferation and differentiation, is activated in fibroblasts through transient receptor potential (TRP) channels, but the function of these channels has not been investigated in human ventricular CFs. Under evaluation in this study, was the role of TRP channels in the differentiation of human ventricular CFs induced by transforming the growth factor beta (TGF-β), a pro-fibrotic cytokine. Methods: Human ventricular CFs were used in this study. The differentiation of CFs into myofibroblast was induced with TGF-β and was identified by the expression of smooth muscle actin. Results: Results indicate that Ca2+ signaling was an essential component of ventricular CF dif­ferentiation. CFs treated with TGF-β demonstrated increased expression of a TRP channel, TRPV4, both at the mRNA and protein levels, which corresponded with CF-myofibroblast trans-differentiation, as evidenced by the upregulation of α-smooth muscle actin, a myofibroblast marker, and plasminogen activator inhibitor-1, which are fibrogenesis markers. An agonist of TRPV4 induced the conversion of CFs into myofibroblasts, whereas it’s antagonist as well a Ca2+ chelating agent reduced it, indicating that the Ca2+ influx throughTRPV4 is required for CF trans-differentiation. Overall, these results dem­onstrate that TRPV4-mediated Ca2+ influx participates in regulating the differentiation of human ventricular CFs into myofibroblasts through the MAPK/ERK pathway. Conclusions: Overall, these results demonstrate that TRPV4-mediated Ca2+ influx participates in regulating the differentiation of human ventricular CFs into myofibroblasts through the MAPK/ERK pathway
    corecore