3,756 research outputs found

    SMAN : Stacked Multi-Modal Attention Network for cross-modal image-text retrieval

    Get PDF
    This article focuses on tackling the task of the cross-modal image-text retrieval which has been an interdisciplinary topic in both computer vision and natural language processing communities. Existing global representation alignment-based methods fail to pinpoint the semantically meaningful portion of images and texts, while the local representation alignment schemes suffer from the huge computational burden for aggregating the similarity of visual fragments and textual words exhaustively. In this article, we propose a stacked multimodal attention network (SMAN) that makes use of the stacked multimodal attention mechanism to exploit the fine-grained interdependencies between image and text, thereby mapping the aggregation of attentive fragments into a common space for measuring cross-modal similarity. Specifically, we sequentially employ intramodal information and multimodal information as guidance to perform multiple-step attention reasoning so that the fine-grained correlation between image and text can be modeled. As a consequence, we are capable of discovering the semantically meaningful visual regions or words in a sentence which contributes to measuring the cross-modal similarity in a more precise manner. Moreover, we present a novel bidirectional ranking loss that enforces the distance among pairwise multimodal instances to be closer. Doing so allows us to make full use of pairwise supervised information to preserve the manifold structure of heterogeneous pairwise data. Extensive experiments on two benchmark datasets demonstrate that our SMAN consistently yields competitive performance compared to state-of-the-art methods

    Real and Virtual Nucleon Compton Scattering in the Perturbative Limit

    Full text link
    We present the results of calculations analyzing nucleon Compton scattering to lowest order using perturbative QCD (pQCD) methods. Two scenarios are considered: (1) the incoming photon is real; and (2) the incoming photon is virtual. The case of a real photon has been previously analyzed at least 5 times using pQCD, but no two results are in agreement. Here it is shown that our result agrees with that of Brooks and Dixon published in 2000. The case of a virtual photon has been previously analyzed only once using pQCD. However, doubt has been cast on the validity of that result. The results presented here for virtual photon are believed to be more reliable. Some consideration is given of how to compare these results with experiment. Following the lead of Brooks and Dixon, for the proton, this involves normalizing the cross section using the Dirac proton form factor, which we also calculate. Finally, there is a comparison of our results with recent experiments.Comment: 36 pages, 11 figure

    Deep attentive video summarization with distribution consistency learning

    Get PDF
    This article studies supervised video summarization by formulating it into a sequence-to-sequence learning framework, in which the input and output are sequences of original video frames and their predicted importance scores, respectively. Two critical issues are addressed in this article: short-term contextual attention insufficiency and distribution inconsistency. The former lies in the insufficiency of capturing the short-term contextual attention information within the video sequence itself since the existing approaches focus a lot on the long-term encoder-decoder attention. The latter refers to the distributions of predicted importance score sequence and the ground-truth sequence is inconsistent, which may lead to a suboptimal solution. To better mitigate the first issue, we incorporate a self-attention mechanism in the encoder to highlight the important keyframes in a short-term context. The proposed approach alongside the encoder-decoder attention constitutes our deep attentive models for video summarization. For the second one, we propose a distribution consistency learning method by employing a simple yet effective regularization loss term, which seeks a consistent distribution for the two sequences. Our final approach is dubbed as Attentive and Distribution consistent video Summarization (ADSum). Extensive experiments on benchmark data sets demonstrate the superiority of the proposed ADSum approach against state-of-the-art approaches
    corecore