480 research outputs found

    Molecular Beam Epitaxy Growth of Superconducting LiFeAs Film on SrTiO3(001) Substrate

    Full text link
    The stoichiometric "111" iron-based superconductor, LiFeAs, has attacted great research interest in recent years. For the first time, we have successfully grown LiFeAs thin film by molecular beam epitaxy (MBE) on SrTiO3(001) substrate, and studied the interfacial growth behavior by reflection high energy electron diffraction (RHEED) and low-temperature scanning tunneling microscope (LT-STM). The effects of substrate temperature and Li/Fe flux ratio were investigated. Uniform LiFeAs film as thin as 3 quintuple-layer (QL) is formed. Superconducting gap appears in LiFeAs films thicker than 4 QL at 4.7 K. When the film is thicker than 13 QL, the superconducting gap determined by the distance between coherence peaks is about 7 meV, close to the value of bulk material. The ex situ transport measurement of thick LiFeAs film shows a sharp superconducting transition around 16 K. The upper critical field, Hc2(0)=13.0 T, is estimated from the temperature dependent magnetoresistance. The precise thickness and quality control of LiFeAs film paves the road of growing similar ultrathin iron arsenide films.Comment: 7 pages, 6 figure

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exact mechanism of the effects of hypoxia on the proliferation and apoptosis in carcinoma cells is still conflicting. This study investigated the variation of hypoxia-inducible factor-1α(HIF-1α) expression and the apoptosis effect of hypoxia stimulated by cobalt chloride (CoCl<sub>2</sub>) in pancreatic cancer PC-2 cells.</p> <p>Methods</p> <p>PC-2 cells were cultured with different concentration (50-200 μmol/L) of CoCl<sub>2 </sub>after 24-120 hours to simulate hypoxia in vitro. The proliferation of PC-2 cells was examined by MTT assay. The cellular morphology of PC-2 cells were observed by light inverted microscope and transmission electron microscope(EM). The expression of HIF-1α on mRNA and protein level was measured by semi-quantitive RT-PCR and Western blot analysis. Apoptosis of PC-2 cells were demonstrated by flow cytometry with Annexin V-FITC/PI double staining.</p> <p>Results</p> <p>MTT assay showed that the proliferation of PC-2 cells were stimulated in the first 72 h, while after treated over 72 h, a dose- dependent inhibition of cell growth could be observed. By using transmission electron microscope, swollen chondrosomes, accumulated chromatin under the nuclear membrane and apoptosis bodies were observed. Flow cytometer(FCM) analysis showed the apoptosis rate was correlated with the dosage of CoCl<sub>2</sub>. RT-PCR and Western blot analysis indicated that hypoxia could up-regulate the expression of HIF-1α on both mRNA and protein levels.</p> <p>Conclusion</p> <p>Hypoxic microenvironment stimulated by CoCl<sub>2 </sub>could effectively induce apoptosis and influence cell proliferation in PC-2 cells, the mechanism could be related to up-expression of HIF-1α.</p
    • …
    corecore