6,479 research outputs found

    Three photon absorption in ZnO and ZnS crystals

    Full text link
    We report a systematic investigation of both three-photon absorption (3PA)spectra and wavelength dispersions of Kerr-type nonlinear refraction in wide-gap semiconductors. The Z-scan measurements are recorded for both ZnO and ZnS with femtosecond laser pulses. While the wavelength dispersions of the Kerr nonlinearity are in agreement with a two-band model, the wavelength dependences of the 3PA are found to be given by (3Ephoton/Eg-1)5/2(3Ephoton/Eg)-9. We also evaluate higher-order nonlinear optical effects including the fifth-order instantaneous nonlinear refraction associated with virtual three-photon transitions, and effectively seventh-order nonlinear processes induced by three-photon-excited free charge carriers. These higher-order nonlinear effects are insignificant with laser excitation irradiances up to 40 GW/cm2. Both pump-probe measurements and three-photon figures of merits demonstrate that ZnO and ZnS should be a promising candidate for optical switching applications at telecommunication wavelengths.Comment: 13 pages, 7 figure

    The Role of Chaos in One-Dimensional Heat Conductivity

    Full text link
    We investigate the heat conduction in a quasi 1-D gas model with various degree of chaos. Our calculations indicate that the heat conductivity κ\kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and non-chaotic channels are also studied. The numerical results of divergent exponent α\alpha of heat conduction and diffusion exponent β\beta are in consistent with the formula α=22/β\alpha=2-2/\beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both non-chaotic and chaotic cases, and for the latter case of superdiffusion the finite-size affects the value of β\beta remarkably.Comment: 6 pages, 7 figure

    Valley Carrier Dynamics in Monolayer Molybdenum Disulphide from Helicity Resolved Ultrafast Pump-probe Spectroscopy

    Full text link
    We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remarkable transient reflection signals, in stark contrast to bilayer and bulk MoS2 due to the enhancement of many-body effect at reduced dimensionality. The helicity resolved ultrafast time-resolved result shows that the valley polarization is preserved for only several ps before scattering process makes it undistinguishable. We suggest that the dynamical degradation of valley polarization is attributable primarily to the exciton trapping by defect states in the exfoliated MoS2 samples. Our experiment and a tight-binding model analysis also show that the perfect valley CD selectivity is fairly robust against disorder at the K point, but quickly decays from the high-symmetry point in the momentum space in the presence of disorder.Comment: 15 pages,Accepted by ACS Nan

    Competing Magnetic Orderings and Tunable Topological States in Two-Dimensional Hexagonal Organometallic Lattices

    Full text link
    The exploration of topological states is of significant fundamental and practical importance in contemporary condensed matter physics, for which the extension to two-dimensional (2D) organometallic systems is particularly attractive. Using first-principles calculations, we show that a 2D hexagonal triphenyl-lead lattice composed of only main group elements is susceptible to a magnetic instability, characterized by a considerably more stable antiferromagnetic (AFM) insulating state rather than the topologically nontrivial quantum spin Hall state proposed recently. Even though this AFM phase is topologically trivial, it possesses an intricate emergent degree of freedom, defined by the product of spin and valley indices, leading to Berry curvature-induced spin and valley currents under electron or hole doping. Furthermore, such a trivial band insulator can be tuned into a topologically nontrivial matter by the application of an out-of-plane electric field, which destroys the AFM order, favoring instead ferrimagnetic spin ordering and a quantum anomalous Hall state with a non-zero topological invariant. These findings further enrich our understanding of 2D hexagonal organometallic lattices for potential applications in spintronics and valleytronics.Comment: 9 pages, 8 figure
    corecore