1,645 research outputs found
Analysis of the Penn Korean Universal Dependency Treebank (PKT-UD): Manual Revision to Build Robust Parsing Model in Korean
In this paper, we first open on important issues regarding the Penn Korean
Universal Treebank (PKT-UD) and address these issues by revising the entire
corpus manually with the aim of producing cleaner UD annotations that are more
faithful to Korean grammar. For compatibility to the rest of UD corpora, we
follow the UDv2 guidelines, and extensively revise the part-of-speech tags and
the dependency relations to reflect morphological features and flexible
word-order aspects in Korean. The original and the revised versions of PKT-UD
are experimented with transformer-based parsing models using biaffine
attention. The parsing model trained on the revised corpus shows a significant
improvement of 3.0% in labeled attachment score over the model trained on the
previous corpus. Our error analysis demonstrates that this revision allows the
parsing model to learn relations more robustly, reducing several critical
errors that used to be made by the previous model.Comment: Accepted by The 16th International Conference on Parsing
Technologies, IWPT 202
Effects of a dianion compound as a surface modifier on the back reaction of photogenerated electrons in TiO2-based solar cells
The TiO2 films were modified with a dianion compound, 1,2-ethanedisulfonic acid disodium salt (ESD), to give a negative charge (ethane sulfonate anion) on the TiO2 surface, i.e., TiO2-O-SO2-CH2-CH2-SO3 −), and effects of repulsion between the negative charge and ions (I3 −) of the electrolyte on the performance of dye-sensitized solar cells (DSSCs) were investigated. The reference device without any modification showed a power conversion efficiency (PCE) of 9.89%, whereas for the device with ESD(20)-TiO2/FTO, which was prepared by soaking bare TiO2/FTO in an ESD solution for 20 min, the PCE was increased to 10.97%, due to an increase in both short-circuit current (Jsc) and open-circuit voltage(Voc). It was verified from the measurements of electrochemical impedance, open-circuit voltage decay and dark current that the enhancement in the Jsc and Voc values was attributed to the reduced back reaction between photoinjected electrons and I3 − ions, resulting from the presence of the ethane sulfonate anions on the TiO2 surface. © 2018 King Saud University1
Effect of Hydraulic Activity on Crystallization of Precipitated Calcium Carbonate (PCC) for Eco-Friendly Paper
Wt% of aragonite, a CaCO3 polymorph, increased with higher hydraulic activity (°C) of limestone in precipitated calcium carbonate (PCC) from the lime-soda process (Ca(OH)2-NaOH-Na2CO3). Only calcite, the most stable polymorph, was crystallized at hydraulic activity under 10 °C, whereas aragonite also started to crystallize over 10 °C. The crystallization of PCC is more dependent on the hydraulic activity of limestone than CaO content, a factor commonly used to classify limestone ores according to quality. The results could be effectively applied to the determination of polymorphs in synthetic PCC for eco-friendly paper manufacture
Gomisin A Suppresses Colorectal Lung Metastasis by Inducing AMPK/p38-Mediated Apoptosis and Decreasing Metastatic Abilities of Colorectal Cancer Cells
Gomisin A (G.A) is a dietary lignan compound from Schisandra chinensis. In this study, the effect of G.A on the proliferation and metastasis of colorectal cancer (CRC) cells was investigated using several CRC cell lines and a lung metastasis mouse model. Both oral and intraperitoneal administration of G.A (50 mg/kg) inhibited lung metastasis of CT26 cells. Various concentrations of G.A were incubated with CRC cell lines and their viability was determined using a cell counting kit-8 assay. G.A significantly decreased the viability of various CRC cell lines, whereas it did not change the proliferation of normal colon cells. G.A induced G0/G1 phase arrest and apoptosis of CT26 and HT29 cells by regulating cyclin D1/cyclin-dependent kinase 4 (CDK4) expression and apoptotic proteins such as caspases and B-cell lymphoma-2 (Bcl-2) family proteins, respectively. G.A-induced apoptosis was mediated by AMPK/p38 activation in CRC cells. A non-cytotoxic concentration of G.A inhibited epithelial–mesenchymal transition of CRC cells by modulating E-cadherin and N-cadherin expression levels. Moreover, the migration and invasion of CRC cells were reduced by G.A treatment. Especially, G.A decreased matrix metalloproteinase (MMP)-2 and MMP-9 expressions and activities. G.A ameliorated lung metastasis of CRC cells by decreasing cell survival and metastatic abilities of CRC cells. Thus, G.A might be a potential novel therapeutic agent for metastatic CRC
GAP: Born to Break Hiding
Recently, Machine Learning (ML) is widely investigated in the side-channel analysis (SCA) community. As an artificial neural network can extract the feature without preprocessing, ML-based SCA methods relatively less rely on the attacker\u27s ability. Consequently, they outperform traditional methods.
Hiding is a countermeasure against SCA that randomizes the moments of manipulating sensitive data. Since hiding could disturb the neural network\u27s learning, an attacker should design a proper architecture against hiding. In this paper, we propose inherently robust architecture against every kind of desynchronization. We demonstrated the proposed method with plenty of datasets, including open datasets. As a result, our method outperforms state-of-the-art on every dataset
Dietary calcium intake and the risk of colorectal cancer: a case control study
This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.Abstract
Background
High intake of dietary calcium has been thought to be a protective factor against colorectal cancer. To explore the dose-response relationship in the associations between dietary calcium intake and colorectal cancer risk by cancer location, we conducted a case-control study among Korean population, whose dietary calcium intake levels are relatively low.
Methods
The colorectal cancer cases and controls were recruited from the National Cancer Center in Korea between August 2010 and August 2013. Information on dietary calcium intake was assessed using a semi-quantitative food frequency questionnaire and locations of the colorectal cancers were classified as proximal colon cancer, distal colon cancer, and rectal cancer. Binary and polytomous logistic regression models were used to evaluate the association between dietary calcium intake and risk of colorectal cancer.
Results
A total of 922 colorectal cancer cases and 2766 controls were included in the final analysis. Compared with the lowest calcium intake quartile, the highest quartile group showed a significantly reduced risk of colorectal cancer in both men and women. (Odds ratio (OR): 0.16, 95 % confidence interval (CI): 0.11–0.24 for men; OR: 0.16, 95 % CI: 0.09–0.29 for women). Among the highest calcium intake groups, decrease in cancer risk was observed across all sub-sites of colorectum in both men and women.
Conclusion
In conclusion, calcium consumption was inversely related to colorectal cancer risk in Korean population where national average calcium intake level is relatively lower than Western countries. A decreased risk of colorectal cancer by calcium intake was observed in all sub-sites in men and women
Investigating the Effects of Conditioned Media from Stem Cells of Human Exfoliated Deciduous Teeth on Dental Pulp Stem Cells
Pulp regeneration has recently attracted interest in modern dentistry. However, the success ratio of pulp regeneration is low due to the compromising potential of stem cells, such as their survival, migration, and odontoblastic differentiation. Stem cells from human exfoliated deciduous teeth (SHED) have been considered a promising tool for regenerative therapy due to their ability to secrete multiple factors that are essential for tissue regeneration, which is achieved by minimally invasive procedures with fewer ethical or legal concerns than those of other procedures. The aim of this study is to investigate the potency of SHED-derived conditioned media (SHED CM) on dental pulp stem cells (DPSCs), a major type of mesenchymal stem cells for dental pulp regeneration. Our results show the promotive efficiency of SHED CM on the proliferation, survival rate, and migration of DPSCs in a dose-dependent manner. Upregulation of odontoblast/osteogenic-related marker genes, such as ALP, DSPP, DMP1, OCN, and RUNX2, and enhanced mineral deposition of impaired DPSCs are also observed in the presence of SHED CM. The analysis of SHED CM found that a variety of cytokines and growth factors have positive effects on cell proliferation, migration, anti-apoptosis, and odontoblast/osteogenic differentiation. These findings suggest that SHED CM could provide some benefits to DPSCs in pulp regeneration
- …