40,847 research outputs found
A model of driven and decaying magnetic turbulence in a cylinder
Using mean-field theory, we compute the evolution of the magnetic field in a
cylinder with outer perfectly conducting boundaries, an imposed axial magnetic
and electric field. The thus injected magnetic helicity in the system can be
redistributed by magnetic helicity fluxes down the gradient of the local
current helicity of the small-scale magnetic field. A weak reversal of the
axial magnetic field is found to be a consequence of the magnetic helicity flux
in the system. Such fluxes are known to alleviate so-called catastrophic
quenching of the {\alpha}-effect in astrophysical applications. Application to
the reversed field pinch in plasma confinement devices is discussed.Comment: 7 pages, 4 figures, submitted to Phys. Rev.
Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein
Biominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure. Crucially, this influence is predominantly dependent on the existence of an EP protein concentration gradient and its consecutive interaction with Ca2+ ions. Novel lemon-shaped hollow vaterite structures with a clearly defined nanogranular assembly occur only where particular EP protein and Ca2+ gradients co-exist. Computational fluid dynamics enabled the progress of the reaction to be mapped and the influence of concentration gradients across the device to be calculated. Importantly, these findings could not have been observed using conventional bulk mixing methods. Our findings not only provide direct experimental evidence of the potential influence of EP proteins in crystal formation, but also offer a new biomimetic strategy to develop functional biomaterials for applications such as encapsulation and drug delivery
Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method
An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solution [5 mmol/L p-toluensulfonic acid (p-TSA) + 20 mmol/L bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (bisÂżtris) + 100 Âżmol/L sodium ethylenediaminetetraacetic (EDTA-2Na)] was used to improve the sensitivity of detection. The average spiked recoveries for the ten organic acids ranged from 82.9 to 127.9% with relative standard deviations of 1.44Âż4.71%. The linear ranges of determination were from 15 to 1,000 mg/L with correlation coefficients of 0.9995Âż0.9999. The metabolism of organic acids in cider, and the effect of nutrients including diammonium phosphate (DAP), thiamine, biotin, niacinamide and pantothenic acid on their metabolism, were studied using this method of analysis. We found that before cider brewing, additions of 200 mg/L DAP and 0.3 mg/L thiamine to apple juice concentrate results in a high quality cider
External magnetic field effects on a distorted kagome antiferromagnet
We report bulk magnetization, and elastic and inelastic neutron scattering
measurements under an external magnetic field, , on the weakly coupled
distorted kagome system, Cu_{2}(OD)_3Cl. Our results show that the ordered
state below 6.7 K is a canted antiferromagnet and consists of large
antiferromagnetic -components and smaller ferromagnetic -components. By
first-principle calculations and linear spin wave analysis, we present a simple
spin hamiltonian with non-uniform nearest neighbor exchange interactions
resulting in a system of coupled spin trimers with a single-ion anisotropy that
can qualitatively reproduce the spin dynamics of Cu_{2}(OD)_3Cl.Comment: 5 figure
Quark Orbital-Angular-Momentum Distribution in the Nucleon
We introduce gauge-invariant quark and gluon angular momentum distributions
after making a generalization of the angular momentum density operators. From
the quark angular momentum distribution, we define the gauge-invariant and
leading-twist quark {\it orbital} angular momentum distribution . The
latter can be extracted from data on the polarized and unpolarized quark
distributions and the off-forward distribution in the forward limit. We
comment upon the evolution equations obeyed by this as well as other orbital
distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad
Spanning avalanches in the three-dimensional Gaussian Random Field Ising Model with metastable dynamics: field dependence and geometrical properties
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM)
with metastable dynamics at T=0 have been studied. Statistical analysis of the
field values for which avalanches occur has enabled a Finite-Size Scaling (FSS)
study of the avalanche density to be performed. Furthermore, direct measurement
of the geometrical properties of the avalanches has confirmed an earlier
hypothesis that several kinds of spanning avalanches with two different fractal
dimensions coexist at the critical point. We finally compare the phase diagram
of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at
T=0.Comment: 16 pages, 17 figure
Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls
We consider classical and quantum electromagnetic fields in a
three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of
the frequency . The photons created by the parametric resonance are
distributed in the wave number space around along the axis of the
oscillation. When classical waves propagate along the waveguide in the one
direction, we observe the amplification of the original waves and another wave
generation in the opposite direction by the oscillation of side walls. This can
be understood as the classical counterpart of the photon production. In the
case of two opposite walls oscillating with the same frequency but with a phase
difference, the interferences are shown to occur due to the phase difference in
the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi
- …