289 research outputs found

    RS-Net: robust segmentation of green overlapped apples

    Get PDF
    Fruit detection and segmentation will be essential for future agronomic management, with applications in yield estimation, growth monitoring, intelligent picking, disease detection and etc. In order to more accurately and efficiently realize the recognition and segmentation of apples in natural orchards, a robust segmentation net framework specially developed for fruit production is proposed. This model was improved for the more challenging problem which segments the overlapped apples from the monochromatic background regardless of various corruptions. The method extends Mask R-CNN by embedding an attention mechanism for focusing more on the informative pixels but also suppressing the noise caused by adverse factors (occlusions, overlaps, etc.), which could be more suitable and robust for operating in complex natural environment. Specifically, the Gaussian non-local attention mechanism is transplanted into Mask R-CNN for refining the semantic features generated continuously by residual network and feature pyramid network, then the model forward processing based on the balanced feature levels and finally segments the regions where the apples are located. Experimental results verify the hypothesis of current work and show that the proposed method outperforms other start-of-the-art detection and segmentation models, the AP box and AP mask metric values have reached 85.6% and 86.2% in a reasonable run time, respectively, which can meet the precision and robustness of vision system in agronomic managemen

    Delivery of Quantum Dot-siRNA Nanoplexes in SK-N-SH Cells for BACE1 Gene Silencing and Intracellular Imaging

    Get PDF
    The fluorescent quantum dots (QDs) delivered small interfering RNAs (siRNAs) targeting β-secretase (BACE1) to achieve high transfection efficiency of siRNAs and reduction of β-amyloid (Aβ) in nerve cells. The CdSe/ZnS QDs with the conjugation of amino-polyethylene glycol (PEG) were synthesized. Negatively charged siRNAs were electrostatically adsorbed to the surface of QDs to develop QD-PEG/siRNA nanoplexes. The QD-PEG/siRNAs nanoplexes significantly promote the transfection efficiency of siRNA, and the siRNAs from non-packaged nanoplexes were widely distributed in cell bodies and processes and efficiently silenced BACE1 gene, leading to the reduction of Aβ. The biodegradable PEG polymer coating could protect QDs from being exposed to the intracellular environment and restrained the release of toxic Cd2+. Therefore, the QD-PEG/siRNA nanoplexes reported here might serve as ideal carriers for siRNAs. We developed a novel method of siRNA delivery into nerve cells. We first reported that the QD-PEG/siRNA nanoplexes were generated by the electrostatic interaction and inhibited the Alzheimer's disease (AD)-associated BACE1 gene. We also first revealed the dynamics of QD-PEG/siRNAs within nerve cells via confocal microscopy and the ultrastructural evidences under transmission electron microscopy (TEM). This technology might hold promise for the treatment of neurodegenerative diseases such as AD

    Compound dark tea ameliorates obesity and hepatic steatosis and modulates the gut microbiota in mice

    Get PDF
    Dark tea is a fermented tea that plays a role in regulating the homeostasis of intestinal microorganisms. Previous studies have found that dark tea can improve obesity and has a lipid-lowering effect. In this study, green tea, Ilex latifolia Thunb (kuding tea) and Momordica grosvenori (Luo Han Guo) were added to a new compound dark tea (CDT), to improve the taste and health of this beverage. High-fat diet-fed C57BL/6J mice were treated with low- (6 mg/mL) or high- (12 mg/mL) concentrations of CDT for 18 weeks to assess their effect on lipid metabolism. Our results suggest that low- and high-concentrations of CDT could reduce body weight by 15 and 16% and by 44 and 38% of body fat, respectively, by attenuating body weight gain and fat accumulation, improving glucose tolerance, alleviating metabolic endotoxemia, and regulating the mRNA expression levels of lipid metabolism-related genes. In addition, low concentrations of CDT were able to reduce the abundance of Desulfovibrio, which is positively associated with obesity, and increase the abundance of Ruminococcus, which are negatively associated with obesity. This study demonstrates the effect of CDT on ameliorating lipid metabolism and provides new insights into the research and development of functional tea beverages

    Enhancement of hydrogen physisorption on single-walled carbon nanotubes resulting from defects created by carbon bombardment

    Get PDF
    The defect effect on hydrogen adsorption on single-walled carbon nanotubes (SWNTs) has been studied by using extensive molecular dynamics simulations and density functional theory (DFT) calculations. It indicates that the defects created on the exterior wall of the SWNTs by bombarding the tube wall with carbon atoms and C-2 dimers at a collision energy of 20 eV can enhance the hydrogen adsorption potential of the SWNTs substantially. The average adsorption energy for a H-2 molecule adsorbed on the exterior wall of a defected (10,10) SWNT is similar to 150 meV, while that for a H-2 molecule adsorbed on the exterior wall of a perfect (10,10) SWNT is similar to 104 meV. The H-2 sticking coefficient is very sensitive to temperature, and has a maximum value around 70 to 90 K. The electron density contours, the local density of states, and the electron transfers obtained from the DFT calculations clearly indicate that the H-2 molecules are all physisorbed on the SWNTs. At temperatures above 200 K, most of the H-2 molecules adsorbed on the perfect SWNT are soon desorbed, but the H-2 molecules can still remain on the defected SWNTs at 300 K. The detailed processes of H-2 molecules adsorbing on and desorbing from the (10,10) SWNTs are demonstrated
    • …
    corecore