26,686 research outputs found
Chiral-Odd and Spin-Dependent Quark Fragmentation Functions and their Applications
We define a number of quark fragmentation functions for spin-0, -1/2 and -1
hadrons, and classify them according to their twist, spin and chirality. As an
example of their applications, we use them to analyze semi-inclusive
deep-inelastic scattering on a transversely polarized nucleon.Comment: 19 pages in Plain TeX, MIT CTP #221
Quark Orbital-Angular-Momentum Distribution in the Nucleon
We introduce gauge-invariant quark and gluon angular momentum distributions
after making a generalization of the angular momentum density operators. From
the quark angular momentum distribution, we define the gauge-invariant and
leading-twist quark {\it orbital} angular momentum distribution . The
latter can be extracted from data on the polarized and unpolarized quark
distributions and the off-forward distribution in the forward limit. We
comment upon the evolution equations obeyed by this as well as other orbital
distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad
Lorentz Symmetry and the Internal Structure of the Nucleon
To investigate the internal structure of the nucleon, it is useful to
introduce quantities that do not transform properly under Lorentz symmetry,
such as the four-momentum of the quarks in the nucleon, the amount of the
nucleon spin contributed by quark spin, etc. In this paper, we discuss to what
extent these quantities do provide Lorentz-invariant descriptions of the
nucleon structure.Comment: 6 pages, no figur
Implications of Color Gauge Symmetry For Nucleon Spin Structure
We study the chromodynamical gauge symmetry in relation to the internal spin
structure of the nucleon. We show that 1) even in the helicity eigenstates the
gauge-dependent spin and orbital angular momentum operators do not have
gauge-independent matrix element; 2) the evolution equations for the gluon spin
take very different forms in the Feynman and axial gauges, but yield the same
leading behavior in the asymptotic limit; 3) the complete evolution of the
gauge-dependent orbital angular momenta appears intractable in the light-cone
gauge. We define a new gluon orbital angular momentum distribution
which {\it is} an experimental observable and has a simple scale evolution.
However, its physical interpretation makes sense only in the light-cone gauge
just like the gluon helicity distribution y.Comment: Minor corrections are made in the tex
Positivity Constraints for Spin-Dependent Parton Distributions
We derive new positivity constraints on the spin-dependent structure
functions of the nucleon. These model independent results reduce conside\-rably
their domain of allowed values, in particular for the chiral-odd parton
distribution .Comment: 8 pages,CPT-94/P.3059,LaTex,3 fig available on cpt.univ-mrs.fr
directory pub/preprints/94/fundamental-interactions/94-P.305
Electronic transport in a Cantor stub waveguide network
We investigate theoretically, the character of electronic eigenstates and
transmission properties of a one dimensional array of stubs with Cantor
geometry. Within the framework of real space re-normalization group (RSRG) and
transfer matrix methods we analyze the resonant transmission and extended
wave-functions in a Cantor array of stubs, which lack translational order.
Apart from resonant states with high transmittance we unravel a whole family of
wave-functions supported by such an array clamped between two-infinite ordered
leads, which have an extended character in the RSRG scheme, but, for such
states the transmission coefficient across the lead-sample-lead structure
decays following a power-law as the system grows in size. This feature is
explained from renormalization group ideas and may lead to the possibility of
trapping of electronic, optical or acoustic waves in such hierarchical
geometries
Off-Forward Parton Distributions in 1+1 Dimensional QCD
We use two-dimensional QCD as a toy laboratory to study off-forward parton
distributions (OFPDs) in a covariant field theory. Exact expressions (to
leading order in ) are presented for OFPDs in this model and are
evaluated for some specific numerical examples. Special emphasis is put on
comparing the and regimes as well as on analyzing the
implications for the light-cone description of form factors.Comment: Revtex, 6 pages, 4 figure
Glueball Spin
The spin of a glueball is usually taken as coming from the spin (and possibly
the orbital angular momentum) of its constituent gluons. In light of the
difficulties in accounting for the spin of the proton from its constituent
quarks, the spin of glueballs is reexamined. The starting point is the
fundamental QCD field angular momentum operator written in terms of the
chromoelectric and chromomagnetic fields. First, we look at the restrictions
placed on the structure of glueballs from the requirement that the QCD field
angular momentum operator should satisfy the standard commutation
relationships. This can be compared to the electromagnetic charge/monopole
system, where the quantization of the field angular momentum places
restrictions (i.e. the Dirac condition) on the system. Second, we look at the
expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio
Helicity-Flip Off-Foward Parton Distributions of the Nucleon
We identify quark and gluon helicity-flip distributions defined between
nucleon states of unequal momenta. The evolution of these distributions with
change of renormalization scale is calculated in the leading-logarithmic
approximation. The helicity-flip gluon distributions do not mix with any quark
distribution and are thus a unique signature of gluons in the nucleon. Their
contribution to the generalized virtual Compton process is obtained both in the
form of a factorization theorem and an operator product expansion. In deeply
virtual Compton scattering, they can be probed through distinct angular
dependence of the cross section.Comment: a few corrections made, references change
- …