43 research outputs found

    Rosmarinic Acid Prevents Cisplatin-Induced Liver and Kidney Injury by Inhibiting Inflammatory Responses and Enhancing Total Antioxidant Capacity, Thereby Activating the Nrf2 Signaling Pathway

    Get PDF
    Drug-induced liver and kidney damage is an emergent clinical issue that should be addressed. Rosmarinic acid (RA) has obvious anti-inflammatory and antioxidant effects, so we evaluated the anti-inflammatory and antioxidant effects of RA pretreatment on serum and liver and kidney tissues of cisplatin (CP)-treated mice and explored the possible mechanisms. The results showed that RA pretreatment effectively downregulated the serum, liver, and kidney levels of ALT, AST, BUN, and CRE and the inflammatory factors IL-1β, IL-6, and TNF-α, and simultaneously enhanced the total antioxidant capacity of the liver and kidney. RA pretreatment significantly reduced the levels of MPO, MDA, and NO in liver and kidney tissue, inhibited the mRNA expression of IL-1β, IL-6, and TNF-α in liver and kidney tissue, activated the Nrf2 signaling pathway, and upregulated the mRNA expression of downstream target genes. Our findings show that RA could effectively prevent and alleviate acute liver and kidney injury caused by CP

    DNSN-1 recruits GINS for CMG helicase assembly during DNA replication initiation in <i>Caenorhabditis elegans</i>

    Get PDF
    Assembly of the CMG (CDC-45-MCM-2-7-GINS) helicase is the key regulated step during eukaryotic DNA replication initiation. Until now, it was unclear whether metazoa require additional factors that are not present in yeast. In this work, we show that Caenorhabditis elegans DNSN-1, the ortholog of human DONSON, functions during helicase assembly in a complex with MUS-101/TOPBP1. DNSN-1 is required to recruit the GINS complex to chromatin, and a cryo-electron microscopy structure indicates that DNSN-1 positions GINS on the MCM-2-7 helicase motor (comprising the six MCM-2 to MCM-7 proteins), by direct binding of DNSN-1 to GINS and MCM-3, using interfaces that we show are important for initiation and essential for viability. These findings identify DNSN-1 as a missing link in our understanding of DNA replication initiation, suggesting that initiation defects underlie the human disease syndrome that results from DONSON mutations.</p

    Uniaxial ferromagnetism in the kagome metal TbV6{_6}Sn6{_6}

    Full text link
    The synthesis and characterization of the vanadium-based kagome metal TbV6{_6}Sn6{_6} is presented. X-ray measurements confirm this material forms with the same crystal structure type as the recently investigated kagome metals GdV6_6Sn6_6 and YV6_6Sn6_6, with space group symmetry P6/mmm. A signature of a phase transition at 4.1K is observed in heat capacity, resistivity, and magnetic susceptibility measurements, and both resistivity and magnetization measurements exhibit hysteresis in magnetic field. Furthermore, a strikingly large anisotropy in the magnetic susceptibility was observed, with the c-axis susceptibility nearly 100 times the ab plane susceptibility at 2K. This is highly suggestive of uniaxial ferromagnetism, and the large size of 9.4μb\mu_b/f.u. indicates the Tb3+^{3+} 4f4f electronic moments cooperatively align perpendicular to the V kagome lattice plane. The entropy at the phase transition is nearly Rln(2), indicating that the CEF ground state of the Tb3+^{3+} ion is a doublet, and therefore the sublattice of 4f4f electrons in this material can be shown to map at low temperatures to the Ising model in a D6h_{6h} symmetry environment. Hall measurements at temperatures from 300K to 1.7K can be described by two-band carrier transport at temperatures below around 150K, with a large increase in both hole and electron mobilities, similar to YV6_6Sn6_6, and an anomalous Hall effect is seen below the ordering temperature. Angle-resolved photoemission measurements above the magnetic ordering temperature reveal typical kagome dispersions. Our study presents TbV6{_6}Sn6{_6} as an ideal system to study the interplay between Ising ferromagnetism and non-trivial electronic states emerging from a kagome lattice

    High prevalence of vitamin D deficiency among children aged 1 month to 16 years in Hangzhou, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have suggested that vitamin D deficiency in children is widespread. But the vitamin D status of Chinese children is seldom investigated. The objective of the present study was to survey the serum levels of 25-hydroxyvitamin D [25(OH)D] in more than 6,000 children aged 1 month to 16 years in Hangzhou (latitude: 30°N), the capital of Zhejiang Province, southeast China.</p> <p>Methods</p> <p>The children aged 1 month to 16 years who came to the child health care department of our hospital, the children's hospital affiliated to Zhejiang university school of medicine, for health examination were taken blood for 25(OH) D measurement. Serum 25(OH) D levels were determined by direct enzyme-linked immunosorbent assay and categorized as < 25, < 50, and < 75 nmol/L.</p> <p>Results</p> <p>A total of 6,008 children aged 1 month to 16 years participated in this cross-sectional study. All the subjects were divided into subgroups according to their age: 0-1y, 2-5y, 6-11y and 12-16y representing infancy, preschool, school age and adolescence stages respectively. The highest mean level of serum 25(OH)D was found in the 0-1y stage (99 nmol/L) and the lowest one was found in 12-16y stage (52 nmol/L). Accordingly, the prevalence of serum 25(OH)D levels of < 75 nmol/L and < 50 nmol/L were at the lowest among infants (33.6% and 5.4% respectively) and rose to the highest among adolescents (89.6% and 46.4% respectively). The mean levels of serum 25(OH)D and the prevalence of vitamin D deficiency changed according to seasons. In winter and spring, more than 50% of school age children and adolescents had a 25(OH)D level at < 50 nmol/L. If the threshold is changed to < 75 nmol/L, all of the adolescents (100%) had low 25(OH)D levels in winter and 93.7% school age children as well.</p> <p>Conclusions</p> <p>The prevalence of vitamin D deficiency and insufficiency among children in Hangzhou Zhejiang province is high, especially among children aged 6-16 years. We suggest that the recommendation for vitamin D supplementation in Chinese children should be extended to adolescence.</p

    Two ultraviolet radiation datasets that cover China

    Get PDF
    Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes

    Synthesis and Characterization of a Full-Length Infectious cDNA Clone of Tomato Mottle Mosaic Virus

    No full text
    Tomato mottle mosaic virus (ToMMV) is a noteworthy virus which belongs to the Virgaviridae family and causes serious economic losses in tomato. Here, we isolated and cloned the full-length genome of a ToMMV Chinese isolate (ToMMV-LN) from a naturally infected tomato (Solanum lycopersicum L.). Sequence analysis showed that ToMMV-LN contains 6399 nucleotides (nts) and is most closely related to a ToMMV Mexican isolate with a sequence identity of 99.48%. Next, an infectious cDNA clone of ToMMV was constructed by a homologous recombination approach. Both the model host N. benthamiana and the natural hosts tomato and pepper developed severe symptoms upon agroinfiltration with pToMMV, which had a strong infectivity. Electron micrographs indicated that a large number of rigid rod-shaped ToMMV virions were observed from the agroinfiltrated N. benthamiana leaves. Finally, our results also confirmed that tomato plants inoculated with pToMMV led to a high infection rate of 100% in 4–5 weeks post-infiltration (wpi), while pepper plants inoculated with pToMMV led to an infection rate of 40–47% in 4–5 wpi. This is the first report of the development of a full-length infectious cDNA clone of ToMMV. We believe that this infectious clone will enable further studies of ToMMV genes function, pathogenicity and virus–host interaction

    Rs56288038 (C/G) in 3'UTR of IRF-1 Regulated by MiR-502-5p Promotes Gastric Cancer Development

    No full text
    Background/Aims: Interferon regulatory factor 1 (IRF-1) has been shown to function as a transcriptional activator or repressor of a variety of target genes. However, its upstream, non-coding RNA-related regulatory capacity remains unknown. In this study, we focus on the miRNA-associated single nucleotide polymorphisms (SNPs) in the 3′untranslated region (UTR) of IRF-1 to further investigate the functional relationship and potential diagnostic value of the SNPs and miRNAs among Chinese gastric cancer (GC) patients. Methods: We performed a case-control study with 819 GC patients and 756 cancer-free controls. Genotyping by realtime PCR assay, cell transfection, and the dual luciferase reporter assay were used in our study, and the 5-year overall survival rate and relapse-free survival rate in different groups were investigated. Results: We found that patients suffering from Helicobacter pylori (Hp) infection were the susceptible population compared to controls. SNP rs56288038 (C/G) in IRF-1 3′UTR was involved in the occurrence of GC by acting as a tumor promoter factor. SNP rs56288038 (C/G) could be up-regulated by miR-502-5p, which caused a down-regulation of IRF-1 in cell lines and decreased apoptosis induced by IFN-&#x03B3;. Carrying the G genotype was related to significantly low expression of IRF-1 and Hp infection, poor differentiation, big tumor size, invasion depth, as well as the high probability of metastasis, and moreover, the C/G SNP was associated with shorter survival of GC patients with five years of follow-up study. Conclusions: our findings have shown that the SNP rs56288038 (C/G) in IRF-1 3′UTR acted as a promotion factor in GC development through enhancing the regulatory role of miR-502-5p in IRF-1 expression
    corecore