185 research outputs found

    Ion acceleration in "dragging field" of a light-pressure-driven piston

    Full text link
    We propose a new acceleration scheme that combines shock wave acceleration (SWA) and light pressure acceleration (LPA). When a thin foil driven by light pressure of an ultra-intense laser pulse propagates in underdense background plasma, it serves as a shock-like piston, trapping and reflecting background protons to ultra-high energies. Unlike in SWA, the piston velocity is not limited by the Mach number and can be highly relativistic. Background protons can be trapped and reflected forward by the enormous "dragging field" potential behind the piston which is not employed in LPA. Our one- and two-dimensional particle-in-cell simulations and analytical model both show that proton energies of several tens to hundreds of GeV can be obtained, while the achievable energy in simple LPA is below 10 GeV.Comment: submitte

    Axionlike-particle generation by laser-plasma interaction

    Full text link
    Axion, a hypothetical particle that is crucial to quantum chromodynamics and dark matter theory, has not yet been found in any experiment. With the improvement of laser technique, much stronger quasi-static electric and magnetic fields can be created in laboratory using laser-plasma interaction. In this article, we discuss the feasibility of axion or axionlike-particle's exploring experiments using planar and cylindrically symmetric laser-plasma fields as backgrounds while probing with an ultrafast superstrong optical laser or x-ray free-electron laser with high photon number. Compared to classical magnet design, the axion source in laser-plasma interaction trades the accumulating length for the source's interacting strength. Besides, a structured field in the plasma creates a tunable transverse profile of the interaction and improves the signal-noise ratio via the mechanisms such as phase-matching. The mass of axion discussed in this article ranges from 1 \textmu eV to 1 eV. Some simple schemes and estimations of axion production and probe's polarization rotation are given, which reveals the possibility of future laser-plasma axion source in laboratory.Comment: 24 pages, 5 figure
    • …
    corecore