335 research outputs found

    Research on Trajectory Tracking Control of Driverless Vehicle Based on MPC

    Get PDF
    In the vehicle-human-road traffic, the role of human is the most prominent. However, people often cause traffic accidents because of driving fatigue, drunk driving, driving experience, poor road conditions and other reasons, so people are the most likely to make mistakes in the driving environment. Research on intelligent driverless vehicles not only conforms to the current automotive development trend, but also enables people to get rid of the complex driving environment and reduce traffic safety risks. This thesis mainly studies the trajectory tracking of driverless vehicle

    Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta

    Get PDF
    During the Anthropocene, regulating river discharge by high dams may have met the need for water demands in river basins, but resulted in carrying less freshwater and sediment to the sea, inducing land degradation and shoreline retreat in worldwide mega-river deltas. In land-ocean interaction, tide response to water discharge changes plays an important role and is crucial for the river-laden sediment transfer and dispersal, affecting both nearshore and estuarine deposits. The Yellow River Delta (YRD), which is under an increasing pressure of the new discharge regime of the Yellow River, has undergone drastic changes in terms of sediment dynamics and morphologic evolution. To gain a better understanding of the overall fluvial and marine hydrodynamics and morphodynamic processes in the YRD, in this study, a full-scale numerical model is built to investigate the interaction and impacts of changing environmental forcing and dynamics on flow and sediment transport in the estuary of YRD and its adjacent coasts. The results show that the river discharge strongly affects the tidal dynamics and morphology of the delta, particularly in the close vicinity of the outlet and the intertidal zone. Tidal constituents M2 and K1, which are the most significant ones in the YRD, are found to be noticeably affected with a decreasing trend when the river discharge increases. The model results also indicate that river discharge affects the location and intensity of the shear front that occurs in the nearshore areas of the YRD. Increasing the river discharge can induce a seaward movement of the shear front, reduce its width and concentrate its shear intensity. It is found that the reverse of the flow direction at each side of the shear front and strong longshore tidal current can act as a barrier for the sediment dispersal process by keeping suspended sediment in the inner zone, thus to form a particular sediment deposition zone and the depo-center
    • …
    corecore