38,011 research outputs found
Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls
We consider classical and quantum electromagnetic fields in a
three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of
the frequency . The photons created by the parametric resonance are
distributed in the wave number space around along the axis of the
oscillation. When classical waves propagate along the waveguide in the one
direction, we observe the amplification of the original waves and another wave
generation in the opposite direction by the oscillation of side walls. This can
be understood as the classical counterpart of the photon production. In the
case of two opposite walls oscillating with the same frequency but with a phase
difference, the interferences are shown to occur due to the phase difference in
the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi
Off-Forward Parton Distributions in 1+1 Dimensional QCD
We use two-dimensional QCD as a toy laboratory to study off-forward parton
distributions (OFPDs) in a covariant field theory. Exact expressions (to
leading order in ) are presented for OFPDs in this model and are
evaluated for some specific numerical examples. Special emphasis is put on
comparing the and regimes as well as on analyzing the
implications for the light-cone description of form factors.Comment: Revtex, 6 pages, 4 figure
Exciton Valley Dynamics probed by Kerr Rotation in WSe2 Monolayers
We have experimentally studied the pump-probe Kerr rotation dynamics in
WSe monolayers. This yields a direct measurement of the exciton valley
depolarization time . At T=4K, we find ps, a fast
relaxation time resulting from the strong electron-hole Coulomb exchange
interaction in bright excitons. The exciton valley depolarization time
decreases significantly when the lattice temperature increases with
being as short as 1.5ps at 125K. The temperature dependence is well explained
by the developed theory taking into account the exchange interaction and a fast
exciton scattering time on short-range potentials.Comment: 5 pages, 3 figure
Leading Chiral Contributions to the Spin Structure of the Proton
The leading chiral contributions to the quark and gluon components of the
proton spin are calculated using heavy-baryon chiral perturbation theory.
Similar calculations are done for the moments of the generalized parton
distributions relevant to the quark and gluon angular momentum densities. These
results provide useful insight about the role of pions in the spin structure of
the nucleon, and can serve as a guidance for extrapolating lattice QCD
calculations at large quark masses to the chiral limit.Comment: 8 pages, 2 figures; a typo in Ref. 7 correcte
Quark Orbital-Angular-Momentum Distribution in the Nucleon
We introduce gauge-invariant quark and gluon angular momentum distributions
after making a generalization of the angular momentum density operators. From
the quark angular momentum distribution, we define the gauge-invariant and
leading-twist quark {\it orbital} angular momentum distribution . The
latter can be extracted from data on the polarized and unpolarized quark
distributions and the off-forward distribution in the forward limit. We
comment upon the evolution equations obeyed by this as well as other orbital
distributions considered in the literature.Comment: 8 pages, latex, no figures, minor corrections mad
Recommended from our members
Diesel exhaust and house dust mite allergen lead to common changes in the airway methylome and hydroxymethylome.
Exposures to diesel exhaust particles (DEP) from traffic and house dust mite (HDM) allergens significantly increase risks of airway diseases, including asthma. This negative impact of DEP and HDM may in part be mediated by epigenetic mechanisms. Beyond functioning as a mechanical barrier, airway epithelial cells provide the first line of immune defense towards DEP and HDM exposures. To understand the epigenetic responses of airway epithelial cells to these exposures, we exposed human bronchial epithelial cells to DEP and HDM and studied genome-wide 5-methyl-cytosine (5mC) and 5-hydroxy-methylcytosine (5hmC) at base resolution. We found that exposures to DEP and HDM result in elevated TET1 and DNMT1 expression, associated with 5mC and 5hmC changes. Interestingly, over 20% of CpG sites are responsive to both exposures and changes in 5mC at these sites negatively correlated with gene expression differences. These 5mC and 5hmC changes are located in genes and pathways related to oxidative stress responses, epithelial function and immune cell responses and are enriched for binding sites of transcription factors (TFs) involved in these pathways. Histone marks associated with promoters, enhancers and actively transcribed gene bodies were associated with exposure-induced DNA methylation changes. Collectively, our data suggest that exposures to DEP and HDM alter 5mC and 5hmC levels at regulatory regions bound by TFs, which coordinate with histone marks to regulate gene networks of oxidative stress responses, epithelial function and immune cell responses. These observations provide novel insights into the epigenetic mechanisms that mediate the epithelial responses to DEP and HDM in airways
SU(2) gluon propagator on a coarse anisotropic lattice
We calculated the SU(2) gluon propagator in Landau gauge on an anisotropic
coarse lattice with the improved action. The standard and the improved scheme
are used to fix the gauge in this work. Even on the coarse lattice the lattice
gluon propagator can be well described by a function of the continuous
momentum. The effect of the improved gauge fixing scheme is found not to be
apparent. Based on the Marenzoni's model, the mass scale and the anomalous
dimension are extracted and can be reasonably extrapolated to the continuum
limit with the values and . We also extract the
physical anisotropy from the gluon propagator due to the explicit
dependence of the gluon propagator.Comment: LaTeX, 14 pages including 4 ps figure
- âŠ