256 research outputs found

    Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures

    Full text link
    We show that large amplitude, coherent acoustic phonon wavepackets can be generated and detected in Inx_xGa1x_{1-x}N/GaN epilayers and heterostructures in femtosecond pump-probe differential reflectivity experiments. The amplitude of the coherent phonon increases with increasing Indium fraction xx and unlike other coherent phonon oscillations, both \textit{amplitude} and \textit{period} are strong functions of the laser probe energy. The amplitude of the oscillation is substantially and almost instantaneously reduced when the wavepacket reaches a GaN-sapphire interface below the surface indicating that the phonon wavepackets are useful for imaging below the surface. A theoretical model is proposed which fits the experiments well and helps to deduce the strength of the phonon wavepackets. Our model shows that localized coherent phonon wavepackets are generated by the femtosecond pump laser in the epilayer near the surface. The wavepackets then propagate through a GaN layer changing the local index of refraction, primarily through the Franz-Keldysh effect, and as a result, modulate the reflectivity of the probe beam. Our model correctly predicts the experimental dependence on probe-wavelength as well as epilayer thickness.Comment: 11 pages, 14 figure

    Cooperative recombination of electron-hole pairs in semiconductor quantum wells under quantizing magnetic fields

    Get PDF
    Journals published by the American Physical Society can be found at http://journals.aps.org/We present results of detailed investigations of light emission from semiconductor multiple quantum wells at low temperatures and high magnetic fields excited by intense femtosecond laser pulses. The intensity and linewidth as well as the directional and statistical properties of photoemission strongly depended on the magnetic field strength and pump laser fluence. We also investigated the effects of spot size, temperature, excitation geometry, and excitation pulse width on the emission properties. The results suggest that the initially incoherent photoexcited electron-hole pairs spontaneously form a macroscopic coherent state upon relaxation into the low-lying magnetoexcitonic states, followed by the emission of a superfluorescent burst of radiation. We have developed a theoretical model for superfluorescent emission from semiconductor quantum wells, which successfully explained the observed characteristics

    Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma

    Full text link
    We investigate photoluminescence from a high-density electron-hole plasma in semiconductor quantum wells created via intense femtosecond excitation in a strong perpendicular magnetic field, a fully-quantized and tunable system. At a critical magnetic field strength and excitation fluence, we observe a clear transition in the band-edge photoluminescence from omnidirectional output to a randomly directed but highly collimated beam. In addition, changes in the linewidth, carrier density, and magnetic field scaling of the PL spectral features correlate precisely with the onset of random directionality, indicative of cooperative recombination from a high density population of free carriers in a semiconductor environment

    Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma

    Full text link
    Currently, considerable resurgent interest exists in the concept of superradiance (SR), i.e., accelerated relaxation of excited dipoles due to cooperative spontaneous emission, first proposed by Dicke in 1954. Recent authors have discussed SR in diverse contexts, including cavity quantum electrodynamics, quantum phase transitions, and plasmonics. At the heart of these various experiments lies the coherent coupling of constituent particles to each other via their radiation field that cooperatively governs the dynamics of the whole system. In the most exciting form of SR, called superfluorescence (SF), macroscopic coherence spontaneously builds up out of an initially incoherent ensemble of excited dipoles and then decays abruptly. Here, we demonstrate the emergence of this photon-mediated, cooperative, many-body state in a very unlikely system: an ultradense electron-hole plasma in a semiconductor. We observe intense, delayed pulses, or bursts, of coherent radiation from highly photo-excited semiconductor quantum wells with a concomitant sudden decrease in population from total inversion to zero. Unlike previously reported SF in atomic and molecular systems that occur on nanosecond time scales, these intense SF bursts have picosecond pulse-widths and are delayed in time by tens of picoseconds with respect to the excitation pulse. They appear only at sufficiently high excitation powers and magnetic fields and sufficiently low temperatures - where various interactions causing decoherence are suppressed. We present theoretical simulations based on the relaxation and recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing magnetic field, which successfully capture the salient features of the experimental observations.Comment: 21 pages, 4 figure

    Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing

    Full text link
    Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found \textit{only for positive time delay} in both PP and FWM experiments. The rise time at negative time delay for the differential reflection spectra was much slower than the FWM signal or PP differential transmission spectroscopy (DTS) at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing (EID), that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.Comment: 8 figure

    Nonlinear Photoelasticity to Explicate Acoustic Dephasing Dynamics

    Get PDF
    Detection and controlling of acoustic (AC) phonon phase have been strenuous tasks although such capability is crucial for further manipulating thermal properties. Here, we present a versatile formalism for tracing AC nanowaves with arbitrary strain compositions by incorporating the nonlinear photoelasticity (PE) into ultrafast acoustics where broad AC spectrum encompassing thermally important THz frequency range should be collected far beyond Brillouin frequency. The initial AC phase upon displacive carrier generation could be inherently varied depending on the bipolar AC compositions by implementing externally biased piezoelectric diodes. The importance of adopting nonlinear PE is then manifested from the transient phase shift either abrupt at the point of diffuse surface scattering or gradual during phonon-phonon or phonon-electron scattering events based on which the ratio of nonlinear to linear PE coefficient is experimentally extracted as a function of the detection probe energy, reaching 0.98 slightly below the bandgap. As the probing energy is rather set away from the bandgap, AC phase is completely invariant with any scattering events, exhibiting the conventional trend at Brillouin frequency in linear regime. Under potent influence of nonlinear PE, the AC dephasing time during the propagation are quantified as a function of AC wavepacket size and further correlated with intrinsic and extrinsic AC scattering mechanisms in electron reservoir

    Dark-bright magneto-exciton mixing induced by Coulomb interaction in strained quantum wells

    Full text link
    Coupled magneto-exciton states between allowed (`bright') and forbidden (`dark') transitions are found in absorption spectra of strained In0.2_{0.2}Ga0.8_{0.8}As/GaAs quantum wells with increasing magnetic field up to 30 T. We found large (~ 10 meV) energy splittings in the mixed states. The observed anticrossing behavior is independent of polarization, and sensitive only to the parity of the quantum confined states. Detailed experimental and theoretical investigations indicate that the excitonic Coulomb interaction rather than valence band complexity is responsible for the splittings. In addition, we determine the spin composition of the mixed states.Comment: 4 pages, 4 figure
    corecore