22 research outputs found

    Prognostic Stratification of GBMs Using Combinatorial Assessment of IDH1 Mutation, MGMT Promoter Methylation, and TERT Mutation Status: Experience from a Tertiary Care Center in India

    Get PDF
    AbstractThis study aims to establish the best and simplified panel of molecular markers for prognostic stratification of glioblastomas (GBMs). One hundred fourteen cases of GBMs were studied for IDH1, TP53, and TERT mutation by Sanger sequencing; EGFR and PDGFRA amplification by fluorescence in situ hybridization; NF1expression by quantitative real time polymerase chain reaction (qRT-PCR); and MGMT promoter methylation by methylation-specific PCR. IDH1 mutant cases had significantly longer progression-free survival (PFS) and overall survival (OS) as compared to IDH1 wild-type cases. Combinatorial assessment of MGMT and TERT emerged as independent prognostic markers, especially in the IDH1 wild-type GBMs. Thus, within the IDH1 wild-type group, cases with only MGMT methylation (group 1) had the best outcome (median PFS: 83.3 weeks; OS: not reached), whereas GBMs with only TERT mutation (group 3) had the worst outcome (PFS: 19.7 weeks; OS: 32.8 weeks). Cases with both or none of these alterations (group 2) had intermediate prognosis (PFS: 47.6 weeks; OS: 89.2 weeks). Majority of the IDH1 mutant GBMs belonged to group 1 (75%), whereas only 18.7% and 6.2% showed group 2 and 3 signatures, respectively. Interestingly, none of the other genetic alterations were significantly associated with survival in IDH1 mutant or wild-type GBMs.Based on above findings, we recommend assessment of three markers, viz., IDH1, MGMT, and TERT, for GBM prognostication in routine practice. We show for the first time that IDH1 wild-type GBMs which constitute majority of the GBMs can be effectively stratified into three distinct prognostic subgroups based on MGMT and TERT status, irrespective of other genetic alterations

    KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation

    No full text
    KLF2 (Kruppel-like factor 2) is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB) is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB

    O 6 -methylguanine DNA methyltransferase gene promoter methylation in high-grade gliomas: A review of current status

    No full text
    Assessment of promoter methylation of the O 6 -methylguanine DNA methyltransferase (MGMT) gene has recently gained importance in molecular profiling of high-grade gliomas. It has emerged not only as an important prognostic marker but also as a predictive marker for response to temozolomide in patients with newly diagnosed glioblastoma. Further, recent studies indicate that MGMT promoter methylation has strong prognostic relevance even in anaplastic (grade III) gliomas, irrespective of therapy (chemotherapy or radiotherapy). This article provides an overview of its use as a predictive and prognostic biomarker, as well as the methods employed for its assessment and use in therapeutic decision making

    Limb girdle muscular dystrophy type 2A in India: A study based on semi-quantitative protein analysis, with clinical and histopathological correlation

    No full text
    Background : Limb girdle muscular dystrophy (LGMD) type 2A is caused by mutation in the gene encoding for calpain-3 resulting in total or partial loss of protein. Diagnosis of LGMD2A, the most prevalent form of LGMD, is established by analyzing calpain-3 protein deficiency or CAPN3 gene mutation. Since there is no data from India regarding the incidence of LGMD2A, this study was undertaken. Aims : To study the frequency of LGMD2A in Indian population on the basis of protein analysis by immunoblotting and to correlate pathological and clinical features with protein analysis. Settings and Design : One hundred and seventy-one muscle biopsies of clinically suspected LGMD, unclassified muscular dystrophy or myopathy were analyzed in a tertiary national referral centre for neurosciences. Materials and Methods : Histopathological, immunohistochemical and enzyme histochemical analysis of muscle biopsies was performed followed by protein analysis for calpain-3 and dysferlin by immunoblotting. Results : Immunoblot identified 75 patients (43.8%) with calpain-3 deficiency, of which 36 (45%) had complete loss and 39 (55%) had partial loss of calpain-3 protein. In patients with LGMD phenotype alone, the incidence of LGMD2A was 47%. The biopsies of these patients displayed variety of morphological changes ranging from dystrophic pattern with presence of active fibre necrosis, regeneration and lobulated fibres to end stage muscle disease. The mean age of presentation and disease onset was 24 and 18 years respectively. Conclusions : This series of 75 patients is probably the first confirmed cases of LGMD2A (calpainopathy) from India. Our study suggests that LGMD2A is the most frequent form of LGMD in India, similar to the Western data, thus, highlighting the importance of immunoblotting for an accurate diagnosis

    Detection of allelic status of 1p and 19q by microsatellite-based PCR versus FISH: limitations and advantages in application to patient management

    No full text
    Combined loss of chromosome arms 1p and 19q in oligodendroglial tumors has become a powerful predictor of prognosis and treatment response, and hence clinical testing for their detection is widely used nowadays. Polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) analysis and fluorescence in-situ hybridization (FISH) are the 2 important relatively common clinical molecular diagnostic techniques used for this purpose and they have their unique advantages and limitations. The preference of methodology used depends on local expertise and existing laboratory capabilities. However, there is no consensus on which methodologic approach has a better potential. The objective of the study was to compare the accuracy, reliability, and feasibility of FISH and PCR in detecting the 1p and 19q LOH status. Using the PCR-based method, a LOH analysis was performed on 30 oligodendrogliomas and 10 glioblastomas using fresh-frozen tissue and peripheral blood as control. A FISH assay using paraffin blocks was performed on all the cases. Concordance for 1p and 19q was found in 92.5% (37 of 40) and 82.5% (33 of 40) cases, respectively. The relative advantages and limitations of both the techniques are analyzed and discussed. The main issue pertains to the use of the best technique in large clinical trials whose results are translated to patient care services. Unless the technique used is correct, the results of clinical trials and their correlations may be somewhat questionable

    IDH1 mutations in gliomas: first series from a tertiary care centre in India with comprehensive review of literature

    No full text
    Object: Mutations of the gene encoding isocitrate dehydrogenase (IDH) have been shown in a significant proportion of diffuse gliomas. These mutations are specific to gliomas and their utility for diagnosis and prognostication of these tumors is being proclaimed. The present study was conducted with the aim of assessing frequency of IDH1 mutations in gliomas, their correlation with other molecular alterations along with a comprehensive review of available literature. Methods: A total of 100 gliomas of various grades and subtypes from Indian patients were screened for assessing frequency of IDH1 mutations. The findings were correlated with TP53 mutations, 1p/19q deletion, EGFR amplification and PTEN deletion status. The detailed comprehensive review of literature was performed comparing all studies available till date. Results: IDH1 mutations in codon 132 were observed in 46% cases. The frequency was 68.8% in grade II, 85.7% in grade III and 12.8% in GBMs. R132H mutation was most frequent (84.8%). Overall frequency of these mutations was relatively higher in oligodendroglial tumours as compared to astrocytic phenotype (66.7% versus 38.4%; p= 0.06). Primary GBMs showed IDH1 mutation in only 4.4% cases. In contrast, 66.7% of secondary GBMs harboured this alteration. Patients with IDH1 mutations were significantly younger as compared to those without mutation (p=0.001). There was a significant correlation between IDH1 mutation and TP53 mutation (p =0.004). Although IDH1 mutation showed a positive correlation with 1p/19q deletion, the association was not statistically significant (p=0.653). There was no correlation with EGFR amplification or PTEN deletion. Conclusion: IDH1 mutations are present in large proportion of Indian patients with diffuse astrocytic and oligodendroglial neoplasms similar to the reported literature form west. The frequency is lower in primary GBMs and as compared to secondary GBMs. Association with younger age and positive correlation with TP53 mutation and 1p/19q loss is observed. More importantly it is emerging as an independent prognostic marker. Hence the greatest challenge now is establishing a reliable user friendly test for incorporating this novel genetic alteration to routine clinical practice
    corecore