35 research outputs found

    A Centralized SDN Architecture for the 5G Cellular Network

    Full text link
    In order to meet the increasing demands of high data rate and low latency cellular broadband applications, plans are underway to roll out the Fifth Generation (5G) cellular wireless system by the year 2020. This paper proposes a novel method for adapting the Third Generation Partnership Project (3GPP)'s 5G architecture to the principles of Software Defined Networking (SDN). We propose to have centralized network functions in the 5G network core to control the network, end-to-end. This is achieved by relocating the control functionality present in the 5G Radio Access Network (RAN) to the network core, resulting in the conversion of the base station known as the gNB into a pure data plane node. This brings about a significant reduction in signaling costs between the RAN and the core network. It also results in improved system performance. The merits of our proposal have been illustrated by evaluating the Key Performance Indicators (KPIs) of the 5G network, such as network attach (registration) time and handover time. We have also demonstrated improvements in attach time and system throughput due to the use of centralized algorithms for mobility management with the help of ns-3 simulations

    Model of expatriate adjustment and framework for organisational support

    Get PDF
    Increasing globalisation of workforce has resulted into a large population of expatriate workers who engage in temporary work outside their home country. Along with monetary benefits, expatriate assignment is closely associated with a number of challenges which influence adjustment of an expatriate in a foreign country. This paper presents an expatriate adjustment model derived from review of research papers published on expatriate adjustment in the last two decades. Later section of this paper presents major internal and external expatriate support factors. The paper concludes with suggestion of a multilevel action plan at organisational level to support expatriate adjustment

    An Opportunistic-Non Orthogonal Multiple Access based Cooperative Relaying system over Rician Fading Channels

    Full text link
    Non-orthogonal Multiple Access (NOMA) has become a salient technology for improving the spectral efficiency of the next generation 5G wireless communication networks. In this paper, the achievable average rate of an Opportunistic Non-Orthogonal Multiple Access (O-NOMA) based Cooperative Relaying System (CRS) is studied under Rician fading channels with Channel State Information (CSI) available at the source terminal. Based on CSI, for opportunistic transmission, the source immediately chooses either the direct transmission or the cooperative NOMA transmission using the relay, which can provide better achievable average rate performance than the existing Conventional-NOMA (C-NOMA) based CRS with no CSI at the source node. Furthermore, a mathematical expression is also derived for the achievable average rate and the results are compared with C-NOMA based CRS with no CSI at the transmitter end, over a range of increasing power allocation coefficients, transmit Signal-to-Noise Ratios (SNRs) and average channel powers. Numerical results show that the CRS using O-NOMA with CSI achieves better spectral efficiency in terms of the achievable average rate than the Conventional-NOMA based CRS without CSI. To check the consistency of the derived analytical results, Monte Carlo simulations are performed which verify that the results are consistent and matched well with the simulation results.Comment: arXiv admin note: substantial text overlap with arXiv:1709.0822

    Performance analysis of FSO using relays and spatial diversity under log-normal fading channel

    Full text link
    The performance analysis of free space optical communication (FSO) system using relays and spatial diversity at the source is studied in this paper. The effect of atmospheric turbulence and attenuation, caused by different weather conditions and geometric losses, has also been considered for analysis. The exact closed-form expressions are presented for bit error rate (BER) of M-ary quadrature amplitude modulation (M-QAM) technique for multi-hop multiple-input single-output (MISO) FSO system under log-normal fading channel. Furthermore, the link performance of multi-hop MISO and multi-hop single-input and single-output (SISO) FSO systems are compared to the different systems using on-off keying (OOK), repetition codes (RCs) and M-ary pulse amplitude modulation (M-PAM) techniques. A significant performance enhancement in terms of BER analysis and SNR gains is shown for multi-hop MISO and multi-hop SISO FSO systems with M-QAM over other existing systems with different modulation schemes. Moreover, Monte-Carlo simulations are used to validate the accuracy and consistency of the derived analytical results. Numerical results show that M-QAM modulated multi-hop MISO and multi-hop SISO FSO system with relays and spatial diversity outperforms other systems while having the same spectral efficiency of each system.Comment: 4 pages, 4 figures, 4th International Conference on Electrical Energy Systems (ICEES), Feb. 7-9, 2018, SSNCE, Chennai, TN, INDI
    corecore